Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (2): 211-219    DOI: 10.3724/SP.J.1037.2011.00579
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND ROOM TEMPERATURE MECHANICAL PROPERTIES OF Al–6.3Zn–2.8Mg–1.8Cu CASTING ALUMINUM ALLOY
YANG Guangyu, MENG Hongshuai, LIU Shaojun, QI Yuanhao, JIE Wanqi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
Cite this article: 

YANG Guangyu MENG Hongshuai LIU Shaojun QI Yuanhao JIE Wanqi. MICROSTRUCTURES AND ROOM TEMPERATURE MECHANICAL PROPERTIES OF Al–6.3Zn–2.8Mg–1.8Cu CASTING ALUMINUM ALLOY. Acta Metall Sin, 2012, 48(2): 211-219.

Download:  PDF(1130KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructures and room temperature mechanical properties of metal–mold– casting aluminum alloy Al–6.3Zn–2.8Mg–1.8Cu were studied. It was found that the microstructure of the as–cast experimental alloy consists of near equiaxed α(Al) matrix, α(Al)+η(MgZn2) eutectic and little Al7Cu2Fe particle phase. The phase constitution of the quenched experimental alloy was changed, the η phase was dissolved into α(Al) matrix and tended to disappear, however a new phase, S(Al2CuMg), appeared, which still mainly distributed along the α(Al) grain boundary. The optimum single–aging process parameters were determined by investigating age hardening response of the experimental alloy. It was found that the double–aging process could make the tensile strength of the experimental alloy increase from 480 MPa to 490 MPa, and the elongation from 0.2% to 2.2%,comparing with the single–aging process.
Key words:  aluminum alloy      solution treatment      microstructure      age hardening      mechanical property     
Received:  15 September 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51071129) and National Basic Research Program of China (No.2011CB610400)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00579     OR     https://www.ams.org.cn/EN/Y2012/V48/I2/211

[1] Heinz A, Haszler A, Keidel C, Moldenhauer S. Mater Sci Eng, 2000; A280: 102

[2] Srivatsan T S. J Mater Sci, 1992; 27: 4772

[3] Zakharov V V, Rostova T D. Met Sci Heat Treat, 1995; 37(5–6): 203

[4] Mukhopadhyay A K, Reddy G M, Prasad K S, Varma V K, Mondac C. In: Nie J F, Morton A J, Muddle B C, eds., Proc 9th Int Conf on Aluminium Alloys, Australia: Institute

of Materials Engineering Australia Ltd, 2004: 883

[5] Wang H B, Huang J F, Yang B, Zhang J S, Zhang Y A, Xiong B Q. Mater Rev, 2003; 17(9): 1

(王洪斌, 黄进峰, 杨滨, 张济山, 张永安, 熊柏青. 材料导报, 2003; 17(9): 1)

[6] Chen C Q. Chin J Nonferrour Met, 2002; 12(3): 22

(陈昌麒. 中国有色金属学报, 2002; 12(3): 22)

[7] Chen K H, Liu H W, Zhang Z, Li S, Todd R I. J Mater Process Technol, 2003; 142: 190

[8] Mondal C, Mukhopadhyay A K. Mater Sci Eng, 2005; A391: 367

[9] Xie F Y, Yan X Y, Ding L, Zhang F, Chen S L, Chu M G, Chang Y A. Mater Sci Eng, 2003; A355: 144

[10] Manish D D. PhD Thesis, Georgia Institute of Technology, 2000

[11] Fan X G. PhD Thesis, Harbin Institute of Technology, 2007

(樊喜刚. 哈尔滨工业大学博士学位论文, 2007)

[12] Fan X G, Jiang D M, Meng Q C, Zhong L. Mater Lett, 2006; 60: 1475

[13] Starink M J, Wang S C. Acta Mater, 2003; 51: 5131

[14] Poole W J, Sæter J A, Skjervold S, Watercoo G. Metall Mater Trans, 2000; 31A: 2327

[15] Starink M J, Li X M. Metall Mater Trans, 2003; 34A: 899

[16] You W, Lin S Y. Alum Fabr, 1999; 22(1): 4

(游文, 林顺岩. 铝加工, 1999; 22(1): 4)

[17] Si N C, Fu M X. Nonferrous Metal Material and Preparation. Beijing: Chemical Industry Press, 2006: 36

(司乃潮, 傅明喜. 有色金属材料及制备. 北京: 化学工业出版社, 2006: 36)

[18] Li Y Y, Guo GW, Luo Z Q, Long Y. Spec Cast Nonferrous Alloys, 2000; 6: 45

(李元元, 郭国文, 罗宗强, 龙雁. 特种铸造及有色合金, 2000; 6: 45)

[19] Li N K, Cui J Z. Light Alloy Fabr Technol, 2008; 36(1): 5

(李念奎, 崔建忠. 轻合金加工技术, 2008; 36(1): 5)

[20] Zhang B C. Nonferrous Metal and Heat–treatment. Xi’an: NWPU Industry Press, 1993: 62

(张宝昌. 有色金属及其热处理. 西安: 西北工业大学出版社, 1993: 62)

[21] Sheppard T. Extrusion of Aluminium Alloy. London: Kluwer Academic Publisher, 1999: 23

[22] Alekseev A A, Fridlyander I N, Berg L B. Mater Sci Forum, 2002; 396–342: 821

[23] Rokhlin L L, Dobatkina T V, Bochvar N R, Lysova E V. J Alloys Compd, 2004; 367: 10

[24] Metallographic Atlas Compilation Group. Wrought Aluminum Alloy Metallographic Atlas. Beijing: Metallurgical Industry Press, 1975: 157

(金相图谱编写组. 变形铝合金金相图谱. 北京: 冶金工业出版, 1975: 157)

[25] Ding H L, Xin Z H. Practical Aluminum, Copper and Its Alloys Heat Treatment and Metallurgical Failure Analysis. Beijing: Machinery Industry Press, 2008: 102

(丁惠麟, 辛智华. 实用铝、铜及其合金金相热处理和失效分析. 北京: 机械工业出版社, 2008: 102)

[26] Lu S S, Gu K D, Zheng L S. Nonferrous Casting Alloys and Melting. Beijing: National Defense Industry Press, 1983: 52

(陆树荪, 顾开道, 郑来苏. 有色铸造合金及熔炼. 北京: 国防工业出版社, 1983: 52)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!