Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (2): 135-140    DOI: 10.3724/SP.J.1037.2009.00192
论文 Current Issue | Archive | Adv Search |
NUMERICAL MICROSTRUCTURE SIMULATION OF LASER RAPID FORMING 316L STAINLESS STEEL
JIA Wenpeng1; TONG Huiping1; HE Weiwei1; LIN Xin2; HUANG Weidong2
1.State Key Laboratory of Porous Metals Technologies; Northwest Institute for Nonferrous Metal Research; Xi’an 710016
2.State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi’an 710072
Cite this article: 

JIA Wenpeng TONG Huiping HE Weiwei LIN Xin HUANG Weidong. NUMERICAL MICROSTRUCTURE SIMULATION OF LASER RAPID FORMING 316L STAINLESS STEEL. Acta Metall Sin, 2010, 46(2): 135-140.

Download:  PDF(1257KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The laser rapid forming (LRF) as an advanced solid freedom fabrication technology, has been developed rapidly in recent decade. By rapid prototyping with laser cladding, LRF realizes the direct net shaping of the components with irregular shapes and fine inner structures, and gives a short–route, low–cost and high–flexibility fabrication of aero components, aero–engine parts and biomedical implants. In the LRF, melting and solidification are happened in a dynamic non–equilibrium, high temperature gradient and rapid solidification manner, so that the microstructure of the laser rapid formed part is finer than that of ordinary cast or forge part and presents a characteristic of typical epitaxial growth. Therefore, to achieve the predict and control of the microstructure evolution is a key problem. Much efforts have been devoted to narrating the solidification and crystallization in melting pool, but little attention has been paid to stuy the microstructure of LRF part. In this paper, the evolution otemperture field and solidification of LRF part were concerned, the relationships between as–deposited microstructure and the local solidification conditions such as solidification velocity and temperaturgradient of moving melting pool were also investigeted. A coupled 2D transient finite element LRF epitaxial growth model was developed. The morphology evolution and first order dendrite arm space λ1 distribution in 2.8 mm high LRF 316L stainless steel wall were simulated. The results show that the microstructure of LRF 316L stainless steel wall is mainly columnar austenitic dendrites, and the λ1 gradually becomes larger from the bottom about 6.5 μm to the top about 17 μm which is in good agrement with te experimntal. Further more, on the basis of the validated model, morphology volution and λ1 distribution in 40 mm high LRF 316L stainless steel wall are also predicted.

Key words:  316L stanless steel      laseapid forming (LRF)      microstructure      numerical simulation     
Received:  27 March 2009     
Fund: 

Supported by National Key Basic Technology R&D Program of China (No.2007BAE07B05) and National Natural Science Foundation of China (No.50331010)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00192     OR     https://www.ams.org.cn/EN/Y2010/V46/I2/135

[1] Huang W D. Laser Solid Forming. Xi’an: Northwestern Polytechnical University Press, 2007: 16
(黄卫东. 激光立体成形. 西安: 西北工业大学出版社, 2007: 16)
[2] Liu Z X, Huang W D, Yang S. Chin J Nonferrous Met, 2002; 12: 458
(刘振侠, 黄卫东, 杨 森. 中国有色金属学报, 2002; 12: 458)
[3] Zhao Y Z, Shi Y W. Mater Rev, 2003; 17: 14
(赵玉珍, 史耀武. 材料导报, 2003; 17: 14)
[4] Dress W B, Zacharia T, Radhakrishnan B. In: Zacharia T ed., International Conference on Modeling and Control of Joining Process, AWS/ORNL Orlando, Florida, 1993: 10
[5] Grujicic M, Cao G, Figliola R S. Appl Surf Sci, 2001; 43: 57
[6] Lin X, Yang H O, Chen J, Huang W D. Acta Matell Sin, 2006; 42: 368
(林 鑫, 杨海欧, 陈 静, 黄卫东. 金属学报, 2006; 42: 368)
[7] Liu J C, Li L J. Opt Laser Technol, 2005; 37: 292
[8] Toyserkani E, Khajepour A, Corbin S. Opt Lasers Eng, 2004; 41: 867
[9] Jia W P, Chen J, Lin X, Zhong C W, Huang W D. Acta Metall Sin, 2007; 43: 552
(贾文鹏, 陈 静, 林 鑫, 钟诚文, 黄卫东. 金属学报, 2007; 43: 552)
[10] Lin X, Li Y M, Wang M, Feng L P, Chen J, Huang W D. Sci China, 2003; 33: 460
(林 鑫, 李延民, 王 猛, 冯丽萍, 陈 静, 黄卫东. 中国科学, 2003; 33: 460)
[11] Porter D A, Easterling K E. Phase Transformations in Metal and Alloys. 3rd Ed., London: Chapman and Hall, 1992: 168
[12] Poole W J , Weinberg F. Metall Mater, 1998; 29A: 861
[13] Kurz W, Fisher D J. Foundamentals of Solidification. 3rd Ed., Aedermansdorf, Switzerland, Trans Tech Publications, 1992: 233

[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!