Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (1): 77-83    DOI:
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MICROSEGREGATION IN A Ni-BASED SINGLE CRYSTAL SUPERALLOY DIRECTIONALLY SOLIDIFIED UNDER HIGH THERMAL GRADIENT
LIU Gang1); LIU Lin1); ZHAO Xinbao1); ZHANG Weiguo1); JIN Tao2); ZHANG Jun1); FU Hengzhi1)
1) State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072 2) Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

LIU Gang LIU Lin ZHAO Xinbao ZHANG Weiguo JIN Tao ZHANG Jun FU Hengzhi. MICROSTRUCTURE AND MICROSEGREGATION IN A Ni-BASED SINGLE CRYSTAL SUPERALLOY DIRECTIONALLY SOLIDIFIED UNDER HIGH THERMAL GRADIENT. Acta Metall Sin, 2010, 46(1): 77-83.

Download:  PDF(1084KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to understand the effect of high thermal gradient on the microsegregation of refractory elements in Ni-based superalloys, a Ni-based single crystal superalloy containing 4% Re (mass fraction) was prepared by dual heating zone melting and liquid-metal cooling (LMC) directional solidification technique. Comparing with the traditional high rate solidification (HRS) method with thermal gradient G=20-40 K/cm, withdrawal rate V=50-100 $\mu$m/s and primary dendritic arm spacing λ1=200-400 μm, this technique can significantly increase the thermal gradient (up to 238 K/cm) and withdrawal rates (up to 500 $\mu$m/s). Planar-like and cellular-like solid-liquid interfaces, coarse dendrite and fine dendrite were sequentially obtained with increasing withdrawal rates. Under the condition of $G$=238 K/cm and $V$=500 $\mu$m/s, the primary dendritic arm spacing λ1 and the mean size of γ' precipitates (in dendrite core) obviously decreased to 61.3 and 0.04 μm, respectively. In addition, the microsegregation increased initially and then decreased with increasing withdrawal rate, especially for the microsegregations of W and Re. EPMA line scan indicated that solid-back diffusion has an obvious influence on the microsegregation for the fine dendrite structure under high thermal gradient directional solidification.

Key words:  Ni-based single crystal superalloy      high thermal gradient      microsegregation      microstructure     
Received:  23 June 2009     
ZTFLH: 

TG142

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50771081 and 50827102) and National High Technical Research and Development Program of China (No.2007AA03Z552)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2010/V46/I1/77

[1] Tin S, Pollock T M. J Propul Power, 2006; 22: 361
[2] Reed R C. The Superalloys Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 157
[3] Zhang J. J Mater Sci Technol, 2007; 23: 289
[4] Pollock T M, Murphy W H. Metall Mater Trans, 1996; 27A: 1081
[5] Wilson B C, Cutler E R, Fuchs G E. Mater Sci Eng, 2008; A479: 356
[6] Fritzmeier L G. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C, eds., Superalloys 1988, Warrendale: TMS, 1988: 265
[7] Elliott A J, Karney G B, Gigliotti M F X, Pollock T M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Warrendale: TMS, 2004: 421
[8] Elliott A J, Pollcok T M. Metall Mater Trans, 2007; 38A: 871
[9] Li D Z, Su S F, Wang J Q, An G Y, Xu D M. Foundry, 1998; 06: 13
[10] Seo S M, Lee J H, Yoo Y S, Jo C Y, Miyahara H, Ogi K. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A, eds., Superalloys 2008, Warrendale: TMS, 2008: 277
[11] Hobbs R A, Tin S, Rae C M F. Metall Mater Trans, 2005; 36A: 2761
[12] Caldwell E C, Fela F J, Fuchs G E. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Warrendale: TMS, 2004: 811
[13] Hu H Q. Solidification Principle of Metals. Beijing: China Machine Press, 2000: 130
(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2000: 130)

[14] Kurz W, Fisher D J. Fundamentals of Solidification. 4th Ed., Switzerland: Trans Tech Publication Ltd, 1998: 123
[15] Thirumalai A, Akhtar A, Reed R C. Mater Sci Technol, 2006; 22: 1
[16] D’Souza N, Ardakani M G, McLean M, Shollock B A. Metall Mater Trans, 2000; 31A: 2877
[17] Li L. PhD Thesis, Aubrun University, Alabama, 2002
[18] Kearsey R M, Beddoes J C, Jones P, Au P. Intermetallics, 2004; 12: 903
[19] Zhang W G, Liu L, Huang T W, Zhao X B, Yu Z H, Fu H Z. Acta Metall Sin, 2009; 45: 592
(张卫国, 刘林, 黄太文, 赵新宝, 余竹焕, 傅恒志. 金属学报, 2009; 45: 592)

[20] Karunaratne M S A, Carter P, Reed R C. Mater Sci Eng, 2000; A281: 229
[21] Hobbs R A, Tin S, Rae C M F, Broomfield R W, Humphreys C J. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Warrendale: TMS, 2004: 819

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!