Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (1): 84-90    DOI:
论文 Current Issue | Archive | Adv Search |
PHASE FIELD SIMULATION OF GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY
KE Changbo; MA Xiao; ZHANG Xinping
School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640
Cite this article: 

KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY. Acta Metall Sin, 2010, 46(1): 84-90.

Download:  PDF(1038KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The precipitation of metastable Ni4Ti3 particles and their distribution feature in Ni-rich NiTi shape memory alloys have significant influence on the subsequent martensitic transformation behavior and shape memory effect as well as superelasticity. The Ni4Ti3 particles with the space group R3 precipitate coherently along four {111} planes of the B2 matrix and form four pairs of conjugate variants. The diffusion-interface phase field model was used to simulate the nucleation and growth of the Ni4Ti3 precipitate in NiTi shape memory alloy, and its morphological evolution was characterized by solving Ginzburg-Landau equation for non-conserved field variables and Cahn-Hilliard diffusion equation for conserved field variables. More accurate crystallographic parameters and improved mathematical model were used in simulating the formations of 3D plate-shaped or 2D lenticular-shaped Ni4Ti3 variants. The time dependences of length, width and area fraction of Ni4Ti3 precipitate obey a power law, a linear and a logarithmic equation, respectively. The length-to-width ratio of the precipitate is not a constant value, but increases rapidly in the early stage of precipitation and slows down in later stage, which is corresponding to the plate- or lenticular-shaped morphologies and coincident with the experimental observations reported.

Key words:  NiTi shape memory alloy      coherent precipitate      growth kinetics      phase field method      morphology evolution     
Received:  11 June 2009     
ZTFLH: 

TG142

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50671037 and 50871039) and the Chinese Government Graduate Student Overseas Study Program (No.2008615024)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2010/V46/I1/84

[1] Otsuka K, Ren X. Prog Mater Sci, 2005; 50: 511
[2] Li B Y, Rong L J, Li Y Y, Gjunter V E. Acta Mater, 2000; 48: 3895
[3] Zhang Y P, Li D S, Zhang X P. Scr Mater, 2007; 57: 1020
[4] Fan G, Chen W, Yang S, Zhu J, Ren X, Otsuka K. Acta Mater, 2004; 52: 4351
[5] Michutta J, Somsen C, Yawny A, Dlouhy A, Eggeler G. Acta Mater, 2006; 54: 3525
[6] Michutta J, Carroll M C, Yawny A, Somsen C, Neuking K, Eggeler G. Mater Sci Eng, 2004; A378: 152
[7] Bojda O, Eggeler G, Dlougy A. Scr Mater, 2005; 53: 99
[8] Tirry W, Schryvers D. Acta Mater, 2005; 53: 1041
[9] Schryvers D, Tirry W, Yang Z Q. Mater Sci Eng, 2006; A438–440: 485
[10] Kroger A, Dziaszyk S, Frenzel J, Somsen C, Dlouhy A, Eggeler G. Mater Sci Eng, 2008; A481–482: 452
[11] Holec D, Bojda O, Dlouhy A. Mater Sci Eng, 2008; A481–482: 462
[12] Allafi J K, Dlouhy A, Eggeler G. Acta Mater, 2002; 50: 4255
[13] Rajab K E, Doherty R D. Acta Metall, 1989; 37: 2709
[14] Prabhu N, Howe J M. Metall Mater Trans, 1992; 23A: 135
[15] Sueoka K, Ikeda N, Yamamoto T, Kobayashi S. J Appl Phys, 1993; 74: 5437
[16] Moore K T, Howe J M. Acta Mater, 2000; 48: 4083
[17] Li D Y, Chen L Q. Acta Metall, 1996; 45: 2435
[18] Li D Y, Chen L Q. Acta Metall, 1996; 45: 471
[19] Li D Y, Chen L Q. Acta Metall, 1997; 46: 639
[20] Li D Y. Philos Mag, 1999; 79A: 2603
[21] Chen L Q. Annu Rev Res, 2002; 32: 113
[22] Wang Y, Li J. Acta Mater, 2009; doi: 10.1016/j.actamat. 2009.10.041
[23] Khachaturyan A G. Theory of Structural Transformation in Solids. New York: Wiley–Interscience, 1983: 213
[24] Wagner M F, Windl W. Acta Mater, 2008; 56: 6232
[25] Wagner M F, Windl W. Scr Mater, 2009; 60: 207
[26] Sharma S K, Macht M P, Naundorf V. Phys Rev, 1994; 49B: 6655
[27] Wang G, Xu D S, Ma N, Zhou N, Payton E J, Yang R, Mills M J, Wang Y. Acta Mater, 2009; 57: 316
[28] Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1023
[29] Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1029
[30] Wang Y, Banerjee D, Su C C, Khachaturyan A G. Acta Mater, 1998; 46: 2983
[31] Shen C, Simmons J P, Wang Y. Acta Mater, 2007; 55: 1457
[32] Bosze W P, Trivedi R. Metall Trans, 1974; 5: 511
[33] Enomoto M, Aaronson H I. Scr Mater, 1989; 23: 55
[34] Atkinson C. J Appl Phys, 1982; 53: 5689

[1] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[2] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[3] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[4] Cheng WEI, Changbo KE, Haitao MA, Xinping ZHANG. A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. 金属学报, 2018, 54(8): 1204-1214.
[5] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[6] Huidong WU,Chi ZHANG,Wenbo LIU,Zhigang YANG. SIMULATION OF GROWTH KINETICS OF PRO-EUTECTOID FERRITE USING MIXED CONTROL MODEL WITH CONSIDERATION OF DISLOCATION INTERACTION[J]. 金属学报, 2015, 51(9): 1136-1144.
[7] Wenjing MA,Changbo KE,Minbo ZHOU,Shuibao LIANG,Xinping ZHANG. PHASE-FIELD CRYSTAL SIMULATION ON EVOLU- TION AND GROWTH KINETICS OF KIRKENDALL VOIDS IN INTERFACE AND INTERMETALLIC COMPOUND LAYER IN Sn/Cu SOLDERING SYSTEM[J]. 金属学报, 2015, 51(7): 873-882.
[8] KE Changbo, ZHOU Minbo, ZHANG Xinping. PHASE FIELD SIMULATION ON MICROSTRUCTURE EVOLUTION AND GROWTH KINETICS OF Cu6Sn5 INTERMETALLIC COMPOUND DURING EARLY INTERFACIAL REACTION IN Sn/Cu SOLDERING SYSTEM[J]. 金属学报, 2014, 50(3): 294-304.
[9] ZHAO Yan, ZHANG Hongyu, WEI Hua, ZHENG Qi, JIN Tao, SUN Xiaofeng. A PHASE FIELD STUDY FOR SCALING RULES OF GRAIN COARSENING IN POLYCRYSTALLINE SYSTEM CONTAINING SECOND-PHASE PARTICLES[J]. 金属学报, 2013, 49(8): 981-988.
[10] HAN Guomin, HAN Zhiqiang, Alan A. Luo, Anil K. Sachdev, LIU Baicheng. PHASE FIELD SIMULATION ON MORPHOLOGY OF CONTINUOUS PRECIPITATE Mg17Al12IN Mg-Al ALLOY[J]. 金属学报, 2013, 49(3): 277-283.
[11] ZHOU Minbo, MA Xiao, ZHANG Xinping. THE INTERFACIAL REACTION AND INTERMETALLIC COMPOUND GROWTH BEHAVIOR OF BGA STRUC-TURE Sn-3.0Ag-0.5Cu/Cu SOLDER JOINT AT LOW REFLOW TEMPERATURES[J]. 金属学报, 2013, 49(3): 341-350.
[12] KE Changbo, CAO Shanshan, MA Xiao, HUANG Ping, ZHANG Xinping. PHASE FIELD SIMULATION OF AUTO-CATALYTIC GROWTH EFFECT OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2013, 49(1): 115-122.
[13] JIANG Hongjie KE Changbo CAO Shanshan MA Xiao ZHANG Xinping. PREPARATION OF NANO-SIZED SiC REINFORCED NiTi SHAPE MEMORY COMPOSITES AND THEIR MECHANICAL PROPERTIES AND DAMPING BEHAVIOR[J]. 金属学报, 2011, 47(9): 1105-1111.
[14] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF EFFECTS OF PORES ON B2-R PHASE TRANSFORMATION IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2011, 47(2): 129-139.
[15] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF THE EFFECT OF APPLIED EXTERNAL STRESS ON GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi ALLOY[J]. 金属学报, 2010, 46(8): 921-929.
No Suggested Reading articles found!