Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (9): 1025-1029    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECTS OF HIP AND HEAT TREATMENT ON MICROSTRUCTURE AND COMPRESSIVE PROPERTIES OF RAPIDLY SOLIDIFIED NiAl-Cr(Mo)-Hf EUTECTIC ALLOY
SHENG Liyuan; GUO Jianting; ZHANG Wei; XIE Yi; ZHOU Lanzhang; YE Hengqiang
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

SHENG Liyuan GUO Jianting ZHANG Wei XIE Yi ZHOU Lanzhang YE Hengqiang. EFFECTS OF HIP AND HEAT TREATMENT ON MICROSTRUCTURE AND COMPRESSIVE PROPERTIES OF RAPIDLY SOLIDIFIED NiAl-Cr(Mo)-Hf EUTECTIC ALLOY. Acta Metall Sin, 2009, 45(9): 1025-1029.

Download:  PDF(1131KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The NiAl-Cr(Mo) eutectic alloy has better fracture toughness and high temperature strength among NiAl alloys. Hf addition can raise the high temperature strength of NiAl-Cr(Mo) eutectic alloy further, but decreases its room temperature compressive properties obviously, which is caused by the microsegregation of Heusler phases. The NiAl-Cr(Mo)-0.5Hf alloy was rapidly solidified and then hot isostatic pressed (HIP) or high temperature treated (HTT) in order to improve the structure and property of this eutectic alloy. The results reveal that rapid solidification can well refine the microstructure of eutectic alloy and keep more amount of Hf solid solution phase in the alloy. Simultaneously, the shapes and distributions of the Heusler (Ni2AlHf) phases and Hf solid solution phases are well improved. After the HIP treatment, more Heusler phases are transformed into Hf solid solution phases, and the distributions of Heusler phases and Hf solid solution phases become homogeneous, and moreover the primary NiAl phases become coarsening obviously. After HTT, the amount of primary NiAl phases decreases a little, the Heusler phases and Hf solid solution phases become finer. The rapid solidification improves the room temperature compressive properties of the alloy significantly, the HIP and HTT improve its high temperature compressive properties further.

Key words:  NiAl-Cr(Mo)-Hf eutectic alloy      rapid solidification      hot isostatic pressing (HIP)      microstructure      mechanical property     
Received:  03 December 2008     
ZTFLH: 

TG113

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I9/1025

[1] Miracle D B. Acta Metall Mater, 1993; 41: 649
[2] Noebe R D, Bowman R R. Int Mater Rev, 1993; 38: 193
[3] Guo J T. Ordered Intermetallic Compound NiAl Alloy. Beijing: Science Press, 2003: 104
(郭建亭. 有序金属间化合物NiAl合金. 北京: 科学出版社, 2003: 104)
[4] Misra A, Gibala R. Intermetallics, 2000; 8: 1025
[5] Cline H E, Walter J L. Metall Trans, 1970; 1: 2907
[6] Cline H E, Walter J L, Lifshin E, Russell R R. Metall Trans, 1971; 2: 189
[7] Chen X F, Johnson D R, Noebe R D, Olliver B F. J Mater Res, 1995; 10: 1159
[8] Yang J M, Jeng S M, BainK, Amato R A. Acta Mater, 1997; 45: 295
[9] Guo J T, Cui C Y, Qi Y H, Ye H Q. J Alloys Compd, 2002; 343: 142
[10] Guo J T, Sheng L Y, Tian Y X, Ye H Q. Mater Lett, 2008; 62: 3910
[11] Sheng L Y, Guo J T, Tian Y X, Zhou L Z, Ye H Q. Acta Metall Sin, 2008; 44: 524
(盛立远, 郭建亭, 田玉新, 周兰章, 叶恒强. 金属学报, 2008; 44: 524)
[12] Sheng L Y, Guo J T, Zhou L Z, Ye H Q. Mater Sci Eng, 2009; A500: 238
[13] Cao X W. Physics, 1996; 29: 552
(曹效文. 物理, 1996; 29: 552)
[14] Chen H S, Jackson K A. J Cryst Growth, 1971; 8: 184
[15] Sheng L Y, Guo J T, Ye H Q. Mater Des, 2009; 30: 964
[16] Sheng L Y, Zhang W, Guo J T, Wang Z S, Ye H Q. Mater Des, 2009; 30: 2752
[17] Sheng L Y, Guo J T, Zhou L Z, Ye H Q. J Alloy Compd, 2009; 475: 730
[18] Probst–Hein M, Dlouhy A, Eggeler G. Acta Mater, 1999; 47: 2497
[19] Guo J T, Huai K W, Li H T. Metall Mater Trans, 2007; 38A: 35

[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!