Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (3): 302-307    DOI:
论文 Current Issue | Archive | Adv Search |
STRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ti--43Al--3Si ALLOY I. Microstructure Evolution in the Transition Region
FAN Jianglei;LI Xinzhong;GUO Jingjie;SU Yanqing;FU Hengzhi
School of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001
Cite this article: 

FAN Jianglei LI Xinzhong GUO Jingjie SU Yanqing FU Hengzhi. STRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Ti--43Al--3Si ALLOY I. Microstructure Evolution in the Transition Region. Acta Metall Sin, 2009, 45(3): 302-307.

Download:  PDF(1379KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ti--43Al--3Si (atomic fraction, %) alloys, seeding material used in preparation of TiAl base alloy, were prepared by directional solidification with growth rate range of 3---100 μm/s. The influences of growth rate on interfacial morphology and microstructure evolution in transition region were studied. Cellular growth appears in a wide range of growth rate of 3---60 μm/s, and the cellular spacing decreases with increase of growth rate. When growth rate is 90 μm/s, a dendritic growth is observed. During the initial solidification, a thermal transition region can be observed clearly. The distribution of Ti5Si3 phase along transition region and relevance of microstructures between the transition region and directional solidification region have obvious effects on the seeding. When the growth rate is lower than 10 μm/s, a good distribution of Ti5Si3 phase and a good relevance appear, which is favourable in seeding for the present alloy.

Key words:  Ti--43Al--3Si alloy      directionalsolidification      transition region      microstructure     
Received:  29 August 2008     
ZTFLH: 

TG249.9

 
Fund: 

Supported by National Natural Science Foundation of China Nos.50771041 and 50801019) and ost--doctor Foundation of China (No.20080430909)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I3/302

[1] Fu H Z, Guo J J, Su Y Q, Liu L, Xu D M, Li J S. Chin J Nonferrous Met, 2003; 13: 797
(傅恒志, 郭景杰, 苏彦庆, 刘 \ \ 林, 徐达鸣, 李金山. 中国有色金属学报, 2003; 13: 797)

[2] Kim Y W. JOM, 1994; 4: 14
[3] Yamaguchi M, Inui H, Yokoshima S, Kishida K, Johnson D R. Mater Sci Eng, 1996; A213: 25
[4] Dimiduk D M. Mater Sci Eng, 1999; A263: 281
[5] Yan Y Q, Zhang Z Q, Zhou L. Mater Rev, 2000; 14(2): 31
(闫蕴琪, 张振祺, 周 \ \ 廉. 材料导报, 2000; 14(2): 31)

[6] Zhang Y G, Han Y F, Chen G L, Guo J T, Wan X J, Feng D. Intermetallics Structural Materials. Beijing: National Defence Industry Press, 2001: 705
(张永刚, 韩雅芳, 陈国良, 郭建亭, 万晓景, 冯 \ \ 涤. 金属间化合物结构材料. 北京: 国防工业出版社, 2001: 705)

[7] Johnson D R, Chihara K, Inui H, E A. Acta Mater, 1998; 46: 6529
[8] Chen G L, Lin J P. Ordered Intermetallics Structure Materials. Beijing: Metallurgical Industry Press, 1998: 35
(陈国良, 林均品. 有序金属间化合物结构材料. 北京: 冶金工业出版社, 1998: 35)

[9] Luo W Z, Shen J, Li Q L, Man W W, Zheng X Q, Liu L, Fu H Z. Acta Metall Sin, 2006; 42: 1238
(罗文忠, 沈 \ \ 军, 李庆林, 满伟伟, 郑循强, 刘 \ \ 林, 傅恒志. 金属学报. 2006; 42: 1238)

[10] Luo W Z, Shen J, Li Q L, Man W W, Fu H Z. Acta Metall Sin, 2007; 43: 897
(罗文忠, 沈 \ \ 军, 李庆林, 满伟伟, 傅恒志. 金属学报. 2007; 43: 897)

[11] Johnson D R, Masuda Y, Inui H, Yamaguchi M Y. Mater Sci Eng, 1997; A239–240: 577
[12] Kim S E, Lee Y T, Oh M H, Inui H, Yamaguchi M. Intermetallics, 2000; 8: 399
[13] Johnson D R, Inui H, Yamaguchi M. Acta Mater, 1996; 44: 2523
[14] Johnson D R, Inui H, Muto S, Omiya Y, Yamanaka T. Acta Mater, 2006; 54: 1077
[15] Zheng X Q. Master Dissertation, Northwestern Polytechnical University, Xi’an, 2005
(郑遁强. 西北工业大学硕士论文, 西安, 2005)

[16] Hu H Q. Principle of Solidification. Beijing: China Machine Press, 1991: 153
(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 1991: 153)
[17] Fu H Z, Li X Z, Liu C, Su Y Q, Li S M, Guo J J. Chin J Nonferrous Met, 2005; 15: 495
(傅恒志, 李新中, 刘 \ \ 畅, 苏彦庆, 李双鸣, 郭景杰. 中国有色金属学报. 2005; 15: 495)

[18] Inui H, Nakamura A, Oh M H, Yamaguchi M. Ultramicroscopy, 1991; 39: 268

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!