HOT CORROSION BEHAVIOR OF ARC-ION PLATING Ti-Al-Cr(Si, Y) COATINGS ON Ti60 ALLOY
YAN Wei1; SUN Fengjiu1; WANG Qingjiang2; LIU Jianrong2; CHEN Zhiyong2; LI Shaoqiang2
1.College of Sciences; Northeastern University; Shenyang 110004
2.Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article:
YAN Wei SUN Fengjiu WANG Qingjiang LIU Jianrong CHEN Zhiyong LI Shaoqiang. HOT CORROSION BEHAVIOR OF ARC-ION PLATING Ti-Al-Cr(Si, Y) COATINGS ON Ti60 ALLOY. Acta Metall Sin, 2009, 45(10): 1171-1178.
High–temperature titanium alloys intended for aero engine compressor applications suffer from high–temperature oxidation and environmental corrosion, which prohibit their long–term service at temperatures above 600 ℃. In an attempt to improve the oxidation resistance and corrosion resistance, Ti–48%Al–12%Cr (0.2%Si, 0.1%Y, atomic fraction) protective coatings were plated on the substrate of alloy Ti60 by arc ion plating (AIP) method. The corrosion behavior of the bare alloys and the protective coatings in Na2SO4 and 75%Na2SO4+ 25%K2SO4 (mass fraction) in air was investigated by XRD, SEM and EDS. The results indicate that Ti60 alloy shows a poor corrosion resistance in the hot corrosion process at 800 and 850 ℃due to corrosion product scales spalling. Ti–Al–Cr(Si, Y) coated specimens, however exhibited good hot corrosion resistance at 800 and 850 ℃ in sulfate. Corrosion in 75%Na2SO4+25%K2SO4 is more severe than that in Na2SO4. Ti60 with Ti–Al–Cr–Si coating or Ti–Al–Cr–Si–Y coating has better hot corrosion resistance than that with Ti–Al–Cr coating.
[1] Xiong Y M, Zhu S L, Wang F H. Acta Metall Sin, 2004; 40: 768
(熊玉明, 朱圣龙, 王福会. 金属学报, 2004; 40: 768)
[2] Moskalewicz T, Wendler B, Smeacetto F, Salvo M, Manescu A, Czyrska–Filemonowicz A. Surf Coat Tech, 2008; 202: 5876
[3] Das D K, Trivedi S P. Mater Sci Eng, 2004; A367: 225
[4] Gurrappa I. Oxid Met, 2003; 59: 321
[5] Vojtˇech D, Kubat´?k T, Pavl´?ˇckov´a M, Maixner J. Intermetallics, 2006; 14: 1181
[6] Zhu R Z, He Y D, Qi H B. High Temperature Corrosion and Materials for High Temperature Corrosion. Shanghai: Shanghai Science & Technology Press, 1995: 240
(朱日彰, 何业东, 齐慧滨. 高温腐蚀及耐高温腐蚀材料. 上海: 上海科学技术出版社, 1995: 240)
[7] Li T F. High Temperature Oxidation and Hot Corrosion of Metals. Beijing: Chemical Industry Press, 2004: 258
(李铁藩. 金属高温氧化和热腐蚀. 北京: 化学工业出版社, 2004: 258)
[8] Gurrappa I. Mater Sci Eng, 2003; A356: 372
[9] Xi Y J, Lu J B, Wang Z X, He L L, Wang F H. Trans Nonferrous Met Soc, 2006; 16: 511
[10] Xiong Y M, Zhu S L, Wang F H. Corros Sci, 2008; 50: 15
[11] Xiong Y M, Guan C H, Zhu S L, Wang F H. J Mater Eng, 2006; 15: 565
[12] Tang Z L, Wang F H, Wu W T. Intermetallics, 1999; 7: 1271
[13] Leyens C, Peters M, Hovsepian P Eh, Lewis D B, Luo Q, Munz W D. Surf Coat Tech, 2002; 155: 103
[14] Yan W, Wang Q J, Liu J R, Chen Z Y, Sun F J. Chin J Mater Res, 2009; 23: 231
(闫伟, 王清江, 刘建荣, 陈志勇, 孙凤久. 材料研究学报, 2009; 23: 231)
[15] Shi L Q, Zhang Y S. J Chin Soc Corros Prot, 1992; 12: 192
(史良权, 张允书. 中国腐蚀与防护学报, 1992; 12: 192)
[16] Li M S. Hot Corrosion of Metals. Beijing: Chemical Industry Press, 2001: 274
(李美栓. 金属的高温腐蚀. 北京: 化学工业出版社, 2001: 274)
[17] Tien J K, Pettit F S. Metall Trans, 1972; 3: 1587
[18] Wang Q M, PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2006
(王启民. 中国科学院金属研究所博士学位论文, 沈阳, 2006)
[19] Smeggil G, Funkenbusch A W, Bornstein N S. Thin Solid Films, 1984; 119: 327
[20] Elaiat M M, Kroger F A. J Am Ceram Soc, 1982; 65: 280