Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (10): 1171-1178    DOI:
论文 Current Issue | Archive | Adv Search |
HOT CORROSION BEHAVIOR OF ARC-ION PLATING Ti-Al-Cr(Si, Y) COATINGS ON Ti60 ALLOY
YAN Wei1; SUN Fengjiu1; WANG Qingjiang2; LIU Jianrong2; CHEN Zhiyong2; LI Shaoqiang2
1.College of Sciences; Northeastern University; Shenyang 110004
2.Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

YAN Wei SUN Fengjiu WANG Qingjiang LIU Jianrong CHEN Zhiyong LI Shaoqiang. HOT CORROSION BEHAVIOR OF ARC-ION PLATING Ti-Al-Cr(Si, Y) COATINGS ON Ti60 ALLOY. Acta Metall Sin, 2009, 45(10): 1171-1178.

Download:  PDF(5808KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High–temperature titanium alloys intended for aero engine compressor applications suffer from high–temperature oxidation and environmental corrosion, which prohibit their long–term service at temperatures above 600 ℃. In an attempt to improve the oxidation resistance and corrosion resistance, Ti–48%Al–12%Cr (0.2%Si, 0.1%Y, atomic fraction) protective coatings were plated on the substrate of alloy Ti60 by arc ion plating (AIP) method. The corrosion behavior of the bare alloys and the protective coatings in Na2SO4 and 75%Na2SO4+ 25%K2SO4 (mass fraction) in air was investigated by XRD, SEM and EDS. The results indicate that Ti60 alloy shows a poor corrosion resistance in the hot corrosion process at 800 and 850 ℃due to corrosion product scales spalling. Ti–Al–Cr(Si, Y) coated specimens, however exhibited good hot corrosion resistance at 800 and 850 ℃ in sulfate. Corrosion in 75%Na2SO4+25%K2SO4 is more severe than that in Na2SO4. Ti60 with Ti–Al–Cr–Si coating or Ti–Al–Cr–Si–Y coating has better hot corrosion resistance than that with Ti–Al–Cr coating.

Key words:  titanium alloy      Ti-Al-Cr(Si, Y)      coating      hot corrosion     
Received:  15 April 2009     
ZTFLH: 

TG146.2

 
  TG178

 
Fund: 

Supported by National High Technology Research and Development Program of China (No.2007AA03A224)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I10/1171

[1] Xiong Y M, Zhu S L, Wang F H. Acta Metall Sin, 2004; 40: 768
(熊玉明, 朱圣龙, 王福会. 金属学报, 2004; 40: 768)
[2] Moskalewicz T, Wendler B, Smeacetto F, Salvo M, Manescu A, Czyrska–Filemonowicz A. Surf Coat Tech, 2008; 202: 5876
[3] Das D K, Trivedi S P. Mater Sci Eng, 2004; A367: 225
[4] Gurrappa I. Oxid Met, 2003; 59: 321
[5] Vojtˇech D, Kubat´?k T, Pavl´?ˇckov´a M, Maixner J. Intermetallics, 2006; 14: 1181
[6] Zhu R Z, He Y D, Qi H B. High Temperature Corrosion and Materials for High Temperature Corrosion. Shanghai: Shanghai Science & Technology Press, 1995: 240
(朱日彰, 何业东, 齐慧滨. 高温腐蚀及耐高温腐蚀材料. 上海: 上海科学技术出版社, 1995: 240)
[7] Li T F. High Temperature Oxidation and Hot Corrosion of Metals. Beijing: Chemical Industry Press, 2004: 258
(李铁藩. 金属高温氧化和热腐蚀. 北京: 化学工业出版社, 2004: 258)
[8] Gurrappa I. Mater Sci Eng, 2003; A356: 372
[9] Xi Y J, Lu J B, Wang Z X, He L L, Wang F H. Trans Nonferrous Met Soc, 2006; 16: 511
[10] Xiong Y M, Zhu S L, Wang F H. Corros Sci, 2008; 50: 15
[11] Xiong Y M, Guan C H, Zhu S L, Wang F H. J Mater Eng, 2006; 15: 565
[12] Tang Z L, Wang F H, Wu W T. Intermetallics, 1999; 7: 1271
[13] Leyens C, Peters M, Hovsepian P Eh, Lewis D B, Luo Q, Munz W D. Surf Coat Tech, 2002; 155: 103
[14] Yan W, Wang Q J, Liu J R, Chen Z Y, Sun F J. Chin J Mater Res, 2009; 23: 231
(闫伟, 王清江, 刘建荣, 陈志勇, 孙凤久. 材料研究学报, 2009; 23: 231)
[15] Shi L Q, Zhang Y S. J Chin Soc Corros Prot, 1992; 12: 192
(史良权, 张允书. 中国腐蚀与防护学报, 1992; 12: 192)
[16] Li M S. Hot Corrosion of Metals. Beijing: Chemical Industry Press, 2001: 274
(李美栓. 金属的高温腐蚀. 北京: 化学工业出版社, 2001: 274)
[17] Tien J K, Pettit F S. Metall Trans, 1972; 3: 1587
[18] Wang Q M, PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2006
(王启民. 中国科学院金属研究所博士学位论文, 沈阳, 2006)
[19] Smeggil G, Funkenbusch A W, Bornstein N S. Thin Solid Films, 1984; 119: 327
[20] Elaiat M M, Kroger F A. J Am Ceram Soc, 1982; 65: 280

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[3] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[4] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[5] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[6] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[7] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[8] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[9] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[10] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[11] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[12] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[13] CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. 金属学报, 2022, 58(8): 1083-1092.
[14] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[15] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
No Suggested Reading articles found!