Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (4): 428-443    DOI: 10.11900/0412.1961.2021.00516
Overview Current Issue | Archive | Adv Search |
A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites
WANG Haowei(), ZHAO Dechao, WANG Mingliang
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites. Acta Metall Sin, 2022, 58(4): 428-443.

Download:  HTML  PDF(5966KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In situ TiB2/Al-based composites are high-performance structural materials with excellent overall mechanical properties and machining properties. One of the critical factors in many practical situations is the composites' corrosive resistance. Microgalvanic corrosion occurs between TiB2 particles and the Al matrix in TiB2/Al composites as well as a negative effect of TiB2 particles on the continuous passive layer is observed, resulting in lower corrosive-resistant performance. As a result, developing surface treatment and corrosion protection technology for TiB2/Al composites is especially important. Regarding this problem, this paper mainly reviews the surface modification methods of in situ TiB2/Al composites, including the anodic oxidation and rare earth conversion coating technology, low-temperature molten-salt deposition technology, and microarc oxidation technology. Furthermore, reasonable suggestions for future development on the surface protection technology of TiB2/Al composites are made. The adoption of novel high-efficiency surface treatment and corrosion protection technology should provide effective technical support for the increasing large-scale application of in situ TiB2/Al composites in aviation, aerospace, navigation, national defense, railway transportation, and automotive industrial fields.

Key words:  in situ TiB2/Al composites      surface treatment      corrosion protection      coating     
Received:  29 November 2021     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51971137);National Natural Science Foundation of China(52001203);National Natural Science Foundation of China(52075327);National Natural Science Foundation of China(52004160);National Natural Science Foundation of China(52071207);National Natural Science Foundation of China(52101043);National Natural Science Foundation of China(52101179)
About author:  WANG Haowei, professor, Tel: (021)34202540, E-mail: hwwang@sjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00516     OR     https://www.ams.org.cn/EN/Y2022/V58/I4/428

Fig.1  Nyquist (a) and Bode (b) diagrams of A356 alloy and TiB2/A356, polarization curves for A356 alloy and the composites with different contents of TiB2 (c); corrosive morphologies after polarization test for A356 alloy (d), 5%TiB2/A356 (e), and 15%TiB2/A356 (f); optical micrograph of cross-section of corroded composites (g), cross-section (h) and surface (i) of the magnified corrosion pit[15] (Z''—imaginary part of impedance, Z'—real part of impedance, |Z|—impedance modulus, θ—phase angle)
Fig.2  Nyquist (a), Bode (b), and polarization (c) curves of in situ TiB2/7050Al composites, and SEM images after immersing 8 d of in situ TiB2/7050Al composites at solutions with pH = 4 (d), pH = 6 (e, f), pH = 7 (g), and pH = 10 (h, i)[16] (Ecorr—corrosion potential, Epit—pitting potential, ND—normal direction, ED—extrusion direction; Figs.2f and i are the enlargements of the dash areas in Figs.2e and h, respectively)
Fig.3  SEM images of anodic film on TiB2/A356 composite (a, b)[23], surface morphologies of Ce sealing layer on anodized composites (c, d)[23], Ce3d spectrum of cerium sealing layer on the anodized sample (e)[23], potentiodynamic polarization curves of bare composite, unsealed and sealed anodized composites in a 3.5%NaCl solution (f)[23], and schematic process of cerium-conversion coating (g)[24]
Fig.4  Surface morphologies of cerium conversion coatings on anodized TiB2/A356 composite (a-d) and formation process of cerium conversion coatings on anodized composite during electrolysis treatment (e-h)[26]
Fig.5  SEM micrographs of electrodeposited aluminum coating deposited at deposition time of 1 min (a), 5 min (b), 10 min (c), and 45 min (d), and corresponding formation mechanisms (a1-d1); the schematic illustrations for two-dimensional (e) and three-dimensional (f) nucleation on substrate, and potentiodynamic polarization curves of pure Al, A356, TiB2/A356 composite, and Al-coated TiB2/A356 composite in a 3.5%NaCl solution (g)[30] (r—length of the cube)
Fig.6  Cross-section morphology of Al coating (a)[37], surface image of anodizing Al film on the TiB2/A356 composite (b)[27], Bode diagrams of anodized composite, anodized Al-coated composite and anodized Al (c)[37], and potentiodynamic polarization curves of anodized composite, anodized Al-coated composite and anodized Al (d)[37]
Fig.7  Macro morphologies of TiB2/A201 composite (a) and micro-arc oxidation (MAO) film after cavitation erosion (b)[43]
Fig.8  Micro morphologies of MAO film after cavitation erosion for different time (a-e, a1-e1), dependence of accumulative weight loss on cavitation erosion time (f), potentiodynamic polarization curves of TiB2/A201 composite and MAO films in 3.5%NaCl solution (g), and cross-section images of MAO film (h, h1) (Figs.8a1-e1 are the enlargements of the square areas in Figs.8a-e, respectively; Fig.8h1 is the enlargement of the square area in Fig.8h)[43]
Fig.9  MAO films from alkaline electrolytes with (a, c) and without (b, d) the addition of KMnO4, X-ray photoelectron spectroscopy patterns of MAO films (added with/without KMnO4) (e), and Mn2p spectrum (film added with KMnO4) (f) (Inset in Fig.9c shows the enlargement)[47]
Fig.10  Schematic of preparing the high/medium entropy alloy (HEA/MEA) coating on in situ TiB2/Al matrix composite material by resistance seam processing (Q—Joule heat, I—current, R—resistance of powder, t—time)
1 Bhuvaneswari V, Rajeshkumar L, Nimel Sworna Ross K. Influence of bioceramic reinforcement on tribological behaviour of aluminium alloy metal matrix composites: Experimental study and analysis [J]. J. Mater. Res. Technol., 2021, 15: 2802
2 Zhao S L, Zhang H M, Cui Z S, et al. Superplastic behavior of an in-situ TiB2 particle reinforced aluminum matrix composite processed by elliptical cross-section torsion extrusion [J]. Mater. Charact., 2021, 178: 111243
3 Dong B X, Li Q, Wang Z F, et al. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution [J]. Composites, 2021, 217B: 108912
4 Taheri-Nassaj E, Kobashi M, Choh T. Fabrication and analysis of an in situ TiB2Al composite by reactive spontaneous infiltration [J]. Scr. Mater., 1996, 34: 1257
5 Tee K L, Lu L, Lai M O. Synthesis of in situ Al-TiB2 composites using stir cast route [J]. Compos. Struct., 1999, 47: 589
6 Lu L, Lai M O, Chen F L. Al-4 wt% Cu composite reinforced with in-situ TiB2 particles [J]. Acta Mater., 1997, 45: 4297
7 Ma Z Y, Tjong S C. High temperature creep behavior of in-situ TiB2 particulate reinforced copper-based composite [J]. Mater. Sci. Eng., 2000, A284: 70
8 Han Y F, Liu X F, Bian X F. In situ TiB2 particulate reinforced near eutectic Al-Si alloy composites [J]. Composites, 2002, 33A: 439
9 Wang H W. Preparation and application of in-situ ceramic particles reinforced Al matrix composites [J]. Aeronaut. Manuf. Technol., 2021, 64(16): 14
王浩伟. 原位自生陶瓷颗粒增强铝基复合材料制备及应用 [J]. 航空制造技术, 2021, 64(16): 14
10 Le Y K. Study on in-situ A356/TiB2 composite and its solid-state phase transformation process [D]. Shanghai: Shanghai Jiao Tong University, 2006
乐永康. 原位合成A356/TiB2复合材料及其固态相变过程的研究 [D]. 上海: 上海交通大学, 2006
11 Zhang Y J. High-damping and high-strength cast aluminum-based composite material [D]. Shanghai: Shanghai Jiao Tong University, 2006
张亦杰. 高阻尼高强度铸造铝基复合材料 [D]. 上海: 上海交通大学, 2006
12 Chen D. Preparation and properties of in-situ TiB2/7055 aluminum matrix composite [D]. Shanghai: Shanghai Jiao Tong University, 2008
陈 东. 原位合成TiB2/7055铝基复合材料的制备与性能 [D]. 上海: 上海交通大学, 2008
13 He C L, Cai Q K. Recent developments in research on corrosion of aluminum metal matrix composites [J]. Mater. Rep., 2003, 17(1):45
贺春林, 才庆魁. 铝金属基复合材料的腐蚀研究进展 [J]. 材料导报, 2003, 17(1): 45
14 Nie J F, Wang F, Chen Y Y, et al. Microstructure and corrosion behavior of Al-TiB2/TiC composites processed by hot rolling [J]. Results Phys., 2019, 14: 102471
15 Sun H H, Chen D, Li X F, et al. Electrochemical corrosion behavior of Al-Si alloy composites reinforced with in situ TiB2 particulate [J]. Mater Corros., 2009, 60: 419
16 Huang J, Chen D, Wu Y, et al. Corrosion behavior of in-situ TiB2/7050Al composite in NaCl solution at different pH values [J]. Mater. Res. Express, 2019, 6: 056541
17 Hinton B R W, Arnott D R, Ryan N E. The inhibition of aluminium alloy corrosion by cerous cations [J]. Met. Forum., 1984, 7: 211
18 Mansfeld F, Lin S, Kim K, et al. Pitting and surface modification of SIC/Al [J]. Corros. Sci., 1987, 27: 997.
19 Mansfeld F, Lin S, Kim S, et al. Corrosion protection of Al alloys and Al-based metal matrix composites by chemical passivation [J]. Corrosion, 1989, 45: 615
20 Mansfeld F, Lin S, Kim S, et al. Pitting and passivation of Al alloys and Al-based metal matrix composites [J]. J. Electrochem. Soc., 1990, 137: 78
21 Yu X W, Cao C A, Yao Z M. Application of rare earth metal salts in sealing anodized aluminum alloy [J]. J. Mater. Sci. Lett., 2000, 19: 1907
22 Hu J, Zhao X H, Tang S W, et al. Corrosion protection of aluminum borate whisker reinforced AA6061 composite by cerium oxide-based conversion coating [J]. Surf. Coat. Technol., 2006, 201: 3814
23 Sun H H, Ma N H, Chen D, et al. Fabrication and analysis of anti-corrosion coatings on in-situ TiB2p reinforced aluminum matrix composite [J]. Surf. Coat. Technol., 2008, 203: 329
24 Sun H H, Wang H W, Chen D, et al. Conversion-coating treatment applied to in situ TiB2p reinforced Al-Si-alloy composite forcorrosion protection [J]. Surf. Interface Anal., 2008, 40:1388
25 Dabalà M, Armelao L, Buchberger A, et al. Cerium-based conversion layers on aluminum alloys [J]. Appl. Surf. Sci., 2001, 172: 312
26 Sun H H, Li X F, Chen D, et al. Enhanced corrosion resistance of discontinuous anodic film on in situ TiB2p/A356 composite by cerium electrolysis treatment [J]. J. Mater. Sci., 2009, 44: 786
27 Huang W M. Study on low temperature molten salt deposition of anticorrosive aluminum layer in in-situ TiB2/Al matrix composite material [D]. Shanghai: Shanghai Jiao Tong University, 2013
黄文貌. 原位自生TiB2/铝基复合材料低温熔盐沉积防腐铝层研究 [D]. 上海: 上海交通大学, 2013
28 Chen Z P. Special Electroplating Technology [M]. Beijing: Chemical Industry Press, 2004: 1
陈祝平. 特种电镀技术 [M]. 北京: 化学工业出版社, 2004: 1
29 Kan H M. Study on low temperature aluminium electrolysis [D]. Shenyang: Northeastern University, 2007
阚洪敏. 低温铝电解的研究 [D]. 沈阳: 东北大学, 2007
30 Huang W M, Liu B, Wang M L, et al. Study on the initial electrodeposition behavior of aluminum on TiB2/A356 composite [J]. Mater. Corros., 2014, 65: 502
31 Kunieda M, Katoh R, Mori Y. Rapid prototyping by selective electrodeposition using electrolyte jet [J]. CIRP Ann., 1998, 47: 161
32 Qin X J, Shao G J. Study on the initial electro-deposition behavior of Ni-P alloy [J]. J. Chin. Soc. Corros. Prot., 2004, 24(1): 6
秦秀娟, 邵光杰. 电沉积Ni-P合金初期沉积行为的研究 [J]. 中国腐蚀与防护学报, 2004, 24(1): 6
33 Wang C L, Zhou L H, Hu X H, et al. Density functional theory on characteristics of TiB2(0001) surface [J]. Chin. J. Nonferrous Met., 2008, 18: 145
王春雷, 周理海, 胡雪慧 等. TiB2(0001)表面性质的密度泛函理论 [J]. 中国有色金属学报, 2008, 18: 145
34 Yang J, Chen Q J, Lin Z D, et al. An experimental study: Heteroepitaxial growth of diamond thin films on silicon (111) surface [J]. Prog. Nat. Sci., 1995, 5: 233
35 Plitzko J, Rösler M, Nickel K G. Heteroepitaxial growth of diamond thin films on silicon: Information transfer by epitaxial tilting [J]. Diam. Relat. Mater., 1997, 6: 935
36 Shao G J, Chen L, Wang F Y, et al. Study on the initial electrodeposition behavior of Ni-P alloys [J]. Mater. Chem. Phys., 2005, 90: 327
37 Huang W M, Zhou C, Liu B, et al. Improvement in the corrosion resistance of TiB2/A356 composite by molten-salt electrodeposition and anodization [J]. Surf. Coat. Technol., 2012, 206: 4988
38 Zhang S, Zhang C H, Zhang L T, et al. Cavitation erosion and microstructure of laser surface cladding MMC of SiCp on AA6061 aluminium alloy [J]. J. Mater. Eng., 2002, (2): 47
张 松, 张春华, 张录廷 等. 铝合金表面激光熔覆SiC颗粒增强表层金属基复合材料的组织及空泡腐蚀性能 [J]. 材料工程, 2002, (2): 47
39 Yang Z, Tian J M. Cavitation erosion of structural ceramics [J]. J. Funct. Mater., 2003, 34: 200
杨 政, 田杰谟. 结构陶瓷的空蚀性研究 [J]. 功能材料, 2003, 34: 200
40 Sah S P, Tsuji E, Aoki Y, et al. Cathodic pulse breakdown of anodic films on aluminium in alkaline silicate electrolyte—Understanding the role of cathodic half-cycle in AC plasma electrolytic oxidation [J]. Corros. Sci., 2012, 55: 90
41 Wang D Y, Dong Q, Chen C Z, et al. Recent progress of micro-arc oxidation technique [J]. J. Chin. Ceram. Soc., 2005, 33: 1133
王德云, 东 青, 陈传忠 等. 微弧氧化技术的研究进展 [J]. 硅酸盐学报, 2005, 33: 1133
42 Xue W B, Jin Q, Zhu Q Z, et al. Anti-corrosion microarc oxidation coatings on SiCp/AZ31 magnesium matrix composite [J]. J. Alloys Compd., 2009, 482: 208
43 Zhang H B. Study on the preparation and corrosion resistance of the micro-arc oxidation film of in-situ TiB2/A201 composite [D]. Shanghai: Shanghai Jiao Tong University, 2017
张弘斌. 原位自生TiB2/A201复合材料微弧氧化膜层的制备及其耐蚀性能研究 [D]. 上海: 上海交通大学, 2017
44 Wang L Q, Zhou J S, Liang J, et al. Thermal control coatings on magnesium alloys prepared by plasma electrolytic oxidation [J]. Appl. Surf. Sci., 2013, 280: 151
45 Han J X, Cheng Y L, Tu W B, et al. The black and white coatings on Ti-6Al-4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte [J]. Appl. Surf. Sci., 2018, 428: 684
46 Jiang Y L, Wang J K, Hu B, et al. Preparation of a novel yellow ceramic coating on Ti alloys by plasma electrolytic oxidation [J]. Surf. Coat. Technol., 2016, 307: 1297
47 Xia C J, Huang J, Tao J M, et al. The preparation and properties of the brown film by micro-arc oxidized on in-situ TiB2/7050Al matrix composites [J]. Coatings, 2020, 10: 615
48 Li K, Li W F, Zhang G G, et al. Preparation of black PEO layers on Al-Si alloy and the colorizing analysis [J]. Vacuum, 2015, 111: 131
49 Man H C, Zhang S, Yue T M, et al. Laser surface alloying of NiCrSiB on Al6061 aluminium alloy [J]. Surf. Coat. Technol., 2001, 148: 136
50 Tomida S, Nakata K, Saji S, et al. Formation of metal matrix composite layer on aluminum alloy with TiC-Cu powder by laser surface alloying process [J]. Surf. Coat. Technol., 2001, 142-144: 585
51 Chi Y M, Gong G H, Zhao L J, et al. In-situ TiB2-TiC reinforced Fe-Al composite coating on 6061 aluminum alloy by laser surface modification [J]. J. Mater. Process. Technol., 2021, 294: 117107
52 Rokni M R, Nutt S R, Widener C A, et al. Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray [J]. J. Therm. Spray Technol., 2017, 26: 1308
53 Raoelison R N, Xie Y, Sapanathan T, et al. Cold gas dynamic spray technology: A comprehensive review of processing conditions for various technological developments till to date [J]. Addit. Manuf., 2018, 19: 134
54 Li W Y, Zhang C, Guo X P, et al. Study on impact fusion at particle interfaces and its effect on coating microstructure in cold spraying [J]. Appl. Surf. Sci., 2007, 254: 517
55 Xie X L, Chen C Y, Ji G, et al. A novel approach for fabricating a CNT/AlSi composite with the self-aligned nacre-like architecture by cold spraying [J]. Nano Mater. Sci., 2019, 1: 137
56 Meydanoglu O, Jodoin B, Kayali E S. Microstructure, mechanical properties and corrosion performance of 7075 Al matrix ceramic particle reinforced composite coatings produced by the cold gas dynamic spraying process [J]. Surf. Coat. Technol., 2013, 235: 108
57 Xie X L, Hosni B, Chen C Y, et al. Corrosion behavior of cold sprayed 7075Al composite coating reinforced with TiB2 nanoparticles [J]. Surf. Coat. Technol., 2020, 404: 126460
58 De P S, Mishra R S. Friction stir welding of precipitation strengthened aluminium alloys: Scope and challenges [J]. Sci. Technol. Weld. Joining, 2011, 16: 343
59 Nandan R, DebRoy T, Bhadeshia H K D H. Recent advances in friction-stir welding—Process, weldment structure and properties [J]. Prog. Mater. Sci., 2008, 53: 980
60 Sharma R, Singh A K, Arora A, et al. Effect of friction stir processing on corrosion of Al-TiB2 based composite in 3.5 wt.% sodium chloride solution [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 1383
61 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
62 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
63 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
64 George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
65 Li J C, Huang Y X, Meng X C, et al. A review on high entropy alloys coatings: Fabrication processes and property assessment [J]. Adv. Eng. Mater., 2019, 21: 1900343
66 Li W, Liu P, Liaw P K, Microstructures and properties of high-entropy alloy films and coatings : A review [J]. Mater. Res. Lett., 2018, 6: 199
67 Yan X H, Li J S, Zhang W R, et al. A brief review of high-entropy films [J]. Mater. Chem. Phys., 2018, 210: 12
68 Lu J B, Wang B F, Qiu X K, et al. Microstructure evolution and properties of CrCuFe x NiTi high-entropy alloy coating by plasma cladding on Q235 [J]. Surf. Coat. Technol., 2017, 328: 313
69 Li X F, Feng Y H, Liu B, et al. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding [J]. J. Alloys Compd., 2019, 788: 485
70 Tüten N, Canadinc D, Motallebzadeh A, et al. Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti-6Al-4V substrates [J]. Intermetallics, 2019, 105: 99
71 Tian Y, Shen Y F, Lu C Y, et al. Microstructures and oxidation behavior of Al-CrMnFeCoMoW composite coatings on Ti-6Al-4V alloy substrate via high-energy mechanical alloying method [J]. J. Alloys Compd., 2019, 779: 456
72 Zhao D C, Yamaguchi T, Shu J F, et al. Rapid fabrication of the continuous AlFeCrCoNi high entropy alloy coating on aluminum alloy by resistance seam welding [J]. Appl. Surf. Sci., 2020, 517: 145980
73 Zhao D C, Yamaguchi T, Tusbasa D, et al. Fabrication and friction properties of the AlFeCrCo medium-entropy alloy coatings on magnesium alloy [J]. Mater. Des., 2020, 193: 108872
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[3] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[4] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[5] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[6] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[7] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[8] CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. 金属学报, 2022, 58(8): 1083-1092.
[9] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[10] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[11] ZHANG Shihong, HU Kai, LIU Xia, YANG Yang. Corrosion-Erosion Mechanism and Research Prospect of Bare Materials and Protective Coatings for Power Generation Boiler[J]. 金属学报, 2022, 58(3): 272-294.
[12] REN Yuan, DONG Xinyuan, SUN Hao, LUO Xiaotao. Oxide Cleaning Effect of In-Flight CuNi Droplet During Atmospheric Plasma Spraying by B Addition[J]. 金属学报, 2022, 58(2): 206-214.
[13] LI Wenya, ZHANG Zhengmao, XU Yaxin, SONG Zhiguo, YIN Shuo. Research Progress of Cold Sprayed Ni and Ni-Based Composite Coatings: A Review[J]. 金属学报, 2022, 58(1): 1-16.
[14] CUI Hongzhi, JIANG Di. Research Progress of High-Entropy Alloy Coatings[J]. 金属学报, 2022, 58(1): 17-27.
[15] GUO Lei, GAO Yuan, YE Fuxing, ZHANG Xinmu. CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine[J]. 金属学报, 2021, 57(9): 1184-1198.
No Suggested Reading articles found!