OVERALL ACTIVATION ENERGY OF ISOTHERMAL TRANSFORMATION IN METAL ALLOY AND ITS MECHANISM I. Medium Temperature (Bainite) Isothermal Transformation in Steels
KANG Mokuang1; ZHANG Mingxing2; LIU Feng1; ZHU Ming1
1 School of Materials; Northwestern Polytechnical University; Xi'an 710072
2 Division of Materials; School of Engineering; University of Queensland; Brisbane; QLD 4072; Australia
Cite this article:
KANG Mokuang ZHANG Mingxing LIU Feng ZHU Ming. OVERALL ACTIVATION ENERGY OF ISOTHERMAL TRANSFORMATION IN METAL ALLOY AND ITS MECHANISM I. Medium Temperature (Bainite) Isothermal Transformation in Steels. Acta Metall Sin, 2009, 45(1): 25-31.
Upper bainite, lower bainite and granular structure in isothermally treated steels have all themselves C curves. A single microstructure is always produced in the primary stage, whereas the nearby two-microstructure complex is usually produced in the medium or final stage of the transformation. Only a single microstructure and Arrhenius equation must be used to deduce the overall activation energy for the transformation product. A combination of overall activation energy, morphology and free energy curve can explain the bainitic transformation mechanism and granular structure formation mechanism. The former follows military atom diffusionless martensite-like shear, which occurred in carbon-depleted region controlled by carbon atom diffusion in austenite, and the latter results from civilian atom diffusionless interface control transformation, which occurred in the most carbon--depleted region controlled by carbon atom diffusion in austenite.
[1] Davenport E S, Bain E C. Trans AIME, 1930; 90: 117
[2] Ko T (柯俊), Cottrel S A. J Iron Steel Inst, 1952; 172: 307
[3] Hillert M. Acta Metall, 1959; 7: 653
[4] Vasudevan P, Graham L W, Axon H J. J Iron Steel Inst,1958; 190: 386
[5] Radcliffe S V, Rollason E C. J Iron Steel Inst, 1959; 191: 56
[6] Yu D G, Shi D K. In: Heat Treatment Institution of CMES, ed., Proc First Conf Heat Treatment Institution of CMES. Beijing: China Machine Press, 1996: 105
(俞德刚, 石德珂. 见: 中国机械工程学会热处理学会主编, 中国机械工程学会热处理学会第1届年会论文集, 北京: 机械工业出版社, 1966: 105))
[7] Barford J. J Iron Steel Inst, 1966; 204: 609
[8] Kang M K, Chen D M, Yang S P, Hu G L. Metall Trans, 1992; 23A: 785
[9] Borgenstam A, Hillert M. Acta Mater, 1997; 45: 651
[10] Gupta C, Dey G K, Chakravatty J K, Srivatav D, Banerjee S. Scr Mater, 2005; 53: 559
[11] Venkatraman M, Mohanty O N, Ghosh R N. Scand J Metall, 2001; 30: 8
[12] Kang M K, Zhu M. Acta Metall Sin, 2005; 41: 673
(康沫狂, 朱明. 金属学报, 2005; 41: 673)
[13] Xu N K, Guan D H, Kang M K. Phys Test Chem Anal (Phys Test), 1983; 19(4): 2
(许念坎, 管敦惠, 康沫狂. 理化检验(物理分册), 1983; 19(4): 2)
[14] Kang M K, Sun J L, Yang Q M. Metall Trans, 1990; 21A: 853
[15] Kang M K, Zhu M, Zhang M X. J Mater Sci Technol, 2005; 21: 437
[16] Wmanski R S, Fikelxichian B N, Blanger M E, Kixiskin S T, Fastov N S, Golerik S S. Physical Metallography. Moscow: Metallurgist, 1955: 376
(Уманский Я С, Финкельштейн Б Н, Блантер М Е, Кишкин С Т, Фастов Н С, Горелик С С. Физическое Металловедение. Москва: Металлургиздата, 1955: 376)
[17] Porter D A, Easterling K E. Phase Transformation in Metals and Alloys. New York: Van Nostrand Reinhold Company, 1981: 172, 349
[18] Hillert M; translated by Lai H Y, Liu G X. Diffusion and Thermodynamics in Alloys. Teaching Materials in Beijing Science and Technology University, Beijing: Metallurgical Industry Press, 1984: 122
(Hillet M著; 赖和怡, 刘国勋译. 合金扩散和热力学. 在北京科技大学讲学稿, 北京: 冶金工业出版社, 1984: 122)[19] Bhadeshia H K D H, Edmonds D V. Metall Trans, 1979; 10A: 895
[20] Hou Z S, Zhao X G, Hou W Y, Liang W. Trans Mater Heat Treat, 2005; 26(3): 6
(侯增寿, 赵兴国, 侯文义, 梁 \ \ 伟. 材料热处理学报, 2005; 26(3): 6)
[21] Wits J J, Kop T A, van Leeuwen Y, Seitsma J, van der Zwaag S. Mater Sci Eng, 2000; A283: 234
[22] Entin РИ; translated by Li P L. Austenite Transformation in Steels. Beijing: China Industry Press, 1965: 167
(Ентин R I著; 李培良译. 钢中奥氏体转变. 北京: 中国工业出版社, 1965: 167 )