Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (1): 25-31    DOI:
论文 Current Issue | Archive | Adv Search |
OVERALL ACTIVATION ENERGY OF ISOTHERMAL TRANSFORMATION IN METAL ALLOY AND ITS MECHANISM I. Medium Temperature (Bainite) Isothermal Transformation in Steels
KANG Mokuang1; ZHANG Mingxing2; LIU Feng1; ZHU Ming1
1 School of Materials; Northwestern Polytechnical University; Xi'an 710072
2 Division of Materials; School of Engineering; University of Queensland; Brisbane; QLD 4072; Australia
Cite this article: 

KANG Mokuang ZHANG Mingxing LIU Feng ZHU Ming. OVERALL ACTIVATION ENERGY OF ISOTHERMAL TRANSFORMATION IN METAL ALLOY AND ITS MECHANISM I. Medium Temperature (Bainite) Isothermal Transformation in Steels. Acta Metall Sin, 2009, 45(1): 25-31.

Download:  PDF(1109KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Upper bainite, lower bainite and granular structure in isothermally treated steels have all themselves C curves. A single microstructure is always produced in the primary stage, whereas the nearby two-microstructure complex is usually produced in the medium or final stage of the transformation. Only a single microstructure and Arrhenius equation must be used to deduce the overall activation energy for the transformation product. A combination of overall activation energy, morphology and free energy curve can explain the bainitic transformation mechanism and granular structure formation mechanism. The former follows military atom diffusionless martensite-like shear, which occurred in carbon-depleted region controlled by carbon atom diffusion in austenite, and the latter results from civilian atom diffusionless interface control transformation, which occurred in the most carbon--depleted region controlled by carbon atom diffusion in austenite.

Key words:  bainite transformation      overall activation energy      granular structure      granular bainite      martensite-like shear      interface control transformation      steel     
Received:  10 April 2008     
ZTFLH: 

TG111.5

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I1/25

[1] Davenport E S, Bain E C. Trans AIME, 1930; 90: 117
[2] Ko T (柯俊), Cottrel S A. J Iron Steel Inst, 1952; 172: 307
[3] Hillert M. Acta Metall, 1959; 7: 653
[4] Vasudevan P, Graham L W, Axon H J. J Iron Steel Inst,1958; 190: 386
[5] Radcliffe S V, Rollason E C. J Iron Steel Inst, 1959; 191: 56
[6] Yu D G, Shi D K. In: Heat Treatment Institution of CMES, ed., Proc First Conf Heat Treatment Institution of CMES. Beijing: China Machine Press, 1996: 105
(俞德刚, 石德珂. 见: 中国机械工程学会热处理学会主编, 中国机械工程学会热处理学会第1届年会论文集, 北京: 机械工业出版社, 1966: 105))
[7] Barford J. J Iron Steel Inst, 1966; 204: 609
[8] Kang M K, Chen D M, Yang S P, Hu G L. Metall Trans, 1992; 23A: 785
[9] Borgenstam A, Hillert M. Acta Mater, 1997; 45: 651
[10] Gupta C, Dey G K, Chakravatty J K, Srivatav D, Banerjee S. Scr Mater, 2005; 53: 559
[11] Venkatraman M, Mohanty O N, Ghosh R N. Scand J Metall, 2001; 30: 8
[12] Kang M K, Zhu M. Acta Metall Sin, 2005; 41: 673
(康沫狂, 朱明. 金属学报, 2005; 41: 673)
[13] Xu N K, Guan D H, Kang M K. Phys Test Chem Anal (Phys Test), 1983; 19(4): 2
(许念坎, 管敦惠, 康沫狂. 理化检验(物理分册), 1983; 19(4): 2)
[14] Kang M K, Sun J L, Yang Q M. Metall Trans, 1990; 21A: 853
[15] Kang M K, Zhu M, Zhang M X. J Mater Sci Technol, 2005; 21: 437
[16] Wmanski R S, Fikelxichian B N, Blanger M E, Kixiskin S T, Fastov N S, Golerik S S. Physical Metallography. Moscow: Metallurgist, 1955: 376
(Уманский Я С, Финкельштейн  Б Н, Блантер  М  Е, Кишкин  С Т, Фастов Н  С, Горелик С С.  Физическое Металловедение. Москва: Металлургиздата, 1955: 376)
[17] Porter D A, Easterling K E. Phase Transformation in Metals and Alloys. New York: Van Nostrand Reinhold Company, 1981: 172, 349
[18] Hillert M; translated by Lai H Y, Liu G X. Diffusion and Thermodynamics in Alloys. Teaching Materials in Beijing Science and Technology University, Beijing: Metallurgical Industry Press, 1984: 122
(Hillet M著; 赖和怡, 刘国勋译. 合金扩散和热力学. 在北京科技大学讲学稿, 北京: 冶金工业出版社, 1984: 122)[19] Bhadeshia H K D H, Edmonds D V. Metall Trans, 1979; 10A: 895
[20] Hou Z S, Zhao X G, Hou W Y, Liang W. Trans Mater Heat Treat, 2005; 26(3): 6
(侯增寿, 赵兴国, 侯文义, 梁 \ \ 伟. 材料热处理学报, 2005; 26(3): 6)
[21] Wits J J, Kop T A, van Leeuwen Y, Seitsma J, van der Zwaag S. Mater Sci Eng, 2000; A283: 234
[22] Entin РИ; translated by Li P L. Austenite Transformation in Steels. Beijing: China Industry Press, 1965: 167
(Ентин R I著; 李培良译. 钢中奥氏体转变. 北京: 中国工业出版社, 1965: 167 )

[1] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[4] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[5] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[6] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[7] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[8] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[9] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[10] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[15] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
No Suggested Reading articles found!