Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (1): 113-118    DOI:
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURES OF LASER SINTERED MICRON/ NANO-SIZED Cu-W POWDER
GU Dongdong;SHEN Yifu
College of Materials Science and Technology; Nanjing University of Aeronautics and Astronautics; Nanjing 210016
Cite this article: 

GU Dongdong SHEN Yifu. MICROSTRUCTURES OF LASER SINTERED MICRON/ NANO-SIZED Cu-W POWDER. Acta Metall Sin, 2009, 45(1): 113-118.

Download:  PDF(948KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effects of processing conditions on densification behavior and microstructural features of laser sintered micron/nano-sized C-W powder mixture were investigated. Reasonable increase in the laser power or decrease in the scan speed leads to a higher sintered density and a more homogeneous microstructure. Decreasing the scan line spacing to 0.15 mm improves the surface finish of the sintered component. Lowering the powder layer thickness to 0.15 mm yields a more coherent inter-layer bonding. Under the suitable processing conditions determined, the highest densification level reaches 95.2%. A series of regularly shaped W-ring/Cu-core structures are also formed in laser sintered component, and the forming mechanism was discussed.

Key words:  laser sintering      W-Cu      microstructure      processing parameter     
Received:  12 May 2008     
ZTFLH: 

TG146

 
  TG665

 
Fund: 

Supported by National Natural Science Foundation of China (No.50775113)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I1/113

[1] Guo G C. Liquid Phase Sintering Powder Metallurgy Materials. Beijing: Chemical Industry Press, 2003: 97
(郭庚辰. 液相烧结粉末冶金材料. 北京: 化学工业出版社, 2003: 97)
[2] Fan J L, Huang B Y, Wang D L, Qu X H, Zhang C F. Rare Met Mater Eng, 2001; 30: 401
(范景莲, 黄伯云, 汪登龙, 曲选辉, 张传福. 稀有金属材料与工程, 2001; 30: 401)
[3] Liu B B, Lu Y N, Xie J X. Chin J Nonferrous Met, 2007; 17: 1410
(刘彬彬, 鲁岩娜, 谢建新. 中国有色金属学报, 2007; 17: 1410)
[4] Zhou Z J, Ge C C, Li J T. Acta Metall Sin, 2000; 36: 655
(周张健, 葛昌纯, 李江涛. 金属学报, 2000; 36: 655)
[5] da Costa F A, da Silva A G P, Gomes U U. Powder Technol, 2003; 134: 123
[6] Johnson J L, Brezovsky J J, German R M. Metall Mater Trans, 2005; 36A: 1557
[7] Johnson J L, Brezovsky J J, German R M. Metall Mater Trans, 2005; 36A: 2807
[8] Hong S H, Kim B K. Mater Lett, 2003; 57: 2761
[9] Yoon E S, Lee J S, Oh S T, Kim B K. Int J Refract Met Hard Mater, 2002; 20: 201
[10] Gu D D, Shen Y F, Fang S Q, Xiao J. J Alloys Compd, 2007; 438: 184
[11] Liu J H, Shi Y S, Lu Z L, Huang S H. Appl Phys, 2007;89A: 743
[12] Lin X, Yang H O, Chen J, Huang W D. Acta Metall Sin, 2006; 42: 361
(林鑫, 杨海欧, 陈静, 黄卫东. 金属学报, 2006; 42: 361)
[13] Yan M, Zhang S Q, Wang H M. Acta Metall Sin, 2007; 43: 472
(颜敏, 张述泉, 王华明. 金属学报, 2007; 43: 472)
[14] Dong C, Zhang S Q, Li A, Wang H M. Acta Metall Sin, 2008; 44: 598
(董翠, 张述泉, 李安, 王华明. 金属学报, 2008; 44: 598)
[15] Williams J M, Adewunmi A, Schek R M, Flanagan C L, Krebsbach P H, Feinberg S E, Hollister S J, Das S. Biomaterials, 2005; 26: 4817
[16] Kim D G, Lee B H, Oh S T, Kim Y D, Kang S G. Mater Sci Eng, 2005; A395: 333
[17] Hong S H, Kim B K, Munir Z A. Mater Sci Eng, 2005; A405: 325
[18] Yang M C, Song Z Z, Lu K. Acta Metall Sin, 2004; 40: 639
(杨明川, 宋贞祯, 卢柯. 金属学报, 2004; 43: 639)
[19] Gu D D, Shen Y F. Acta Metall Sin, 2007; 40: 968
(顾冬冬, 沈以赴. 金属学报, 2007; 43: 968)
[20] Simchi A, Pohl H. Mater Sci Eng, 2003; A359: 119
[21] Gu D D, Shen Y F. Metall Mater Trans, 2006; 37B: 967
[22] Arafune K, Hirata A. J Cryst Growth, 1999; 197: 811
[23] Teng X Y, Min G H, Liu H L, Shi Z Q, Wang H R, Ye Y F. Mater Sci Technol, 2001; 9: 383
(滕新营, 闵光辉,  刘含莲, 石志强, 王焕荣, 叶以富. 材料科学与工艺, 2001; 9: 383)
[24] Yuan Z F, Ke J J, Li J. Surface Tension of Metals and Alloys. Beijing: Science Press, 2006: 29
(袁章福, 柯家骏, 李晶. 金属及合金的表面张力. 北京: 科学出版社, 2006: 29)
[25] Shi L K, Gao S Y, Xi M Z, Ji H Z, Zhang Y Z, Du B L. Acta Metall Sin, 2006; 42: 449
(石力开, 高士友, 席明哲, 纪宏志, 张永忠, 杜宝亮. 金属学报, 2006; 42: 449)
[26] Anestiev L A, Froyen L. J Appl Phys, 1999; 86: 4008
[27] Niu H J, Chang I T H. Scr Mater, 1999; 41: 25
[28] Fischer P, Romano V, Weber H P, Karapatis N P, Boillat E, Glardon R. Acta Mater, 2003; 51: 1651
[29] The Chinese Society for Metals, The Nonferrous Metals Society of China. Handbook of Physical Properties of Metal Materials, Vol.1: Physical Properties of Metals and Testing Methods. Beijing: Metallurgical Industry Press, 1987: 323
(中国金属学会, 中国有色金属学会. 金属材料物理性能手册 (第1册: 金属物理性能及测试方法). 北京: 冶金工业
出版社, 1987: 323)
[30] Yang S M, Tao W Q. Heat Transfer. 3rd Ed., Beijing: Higher Education Press, 1998: 424
(杨世铭, 陶文铨. 传热学. 第3版, 北京: 高等教育出版社, 1998: 424)
[31] Chatterjee A N, Kumar S, Saha P, Mishra P K, Choudhury A R. J Mater Process Technol, 2003; 136: 151
[32] Yin H B, Emi T. Metall Mater Trans, 2003; 34B: 483

[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!