Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (7): 871-875     DOI:
Research Articles Current Issue | Archive | Adv Search |
Preparation of high coercivity and high thermal stability sintered Nd-Fe-B magnet by optimizing boundary microstructure
;;Gao Xue-xu;;;
北京科技大学
Cite this article: 

Gao Xue-xu. Preparation of high coercivity and high thermal stability sintered Nd-Fe-B magnet by optimizing boundary microstructure. Acta Metall Sin, 2008, 44(7): 871-875 .

Download:  PDF(942KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Sintered Nd-Fe-B magnet with super-high coercivity and high thermal stability was achieved by blending 3wt%Dy2O3 powder and 3wt% (NdDyTb)25(FeCoNbTiGaAl)68B7 powder to near stoichiometric (NdDyTb)12.69(FeCoNb)84.01B6.00 main alloy powder. The intrinsic coercivity Hci with 3028kA/m, the maximum energy product (BH)max with 254 kJ/m3, the temperature coefficient (22-220℃) of remanence and intrinsic coercivity with -0.104%/ ℃ and -0.356%/ ℃, respectively, and irreversible flux loss at 260℃ near 4% were accomplished. Microstructure analyses indicated that that Nd2Fe14B grain boundaries were smooth and straight and the distribution of Nd-rich phase around Nd2Fe14B grain was continuous and uniform. Dy was rich in near the extension layer of Nd2Fe14B grains, indicating Dy element in Dy2O3 powder diffused and substituted Nd element in Nd-rich phase and the extension layer of Nd2Fe14B grains, which increased magnetic anisotropy of boundary of Nd2Fe14B grains only and depressed the nucleation formation and expansion of reverse magnetization domain. Furthermore, ideal microstructural model of Dy distribution in Nd-Fe-B sintered magnets with high intrinsic coercivity was presented.
Key words:  sintered Nd-Fe-B magnets      binary powder blending technique      Dy2O3      coercivity      thermal stability      microst     
Received:  23 November 2007     
ZTFLH:  TM273  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I7/871

[1]Kaneko Y,Kuniyoshi F,Ishigaki N.J Alloy Compd,2006; 408-412:1344
[2]Bao X Q,Li Q H,Zhu X X,Zhu J,Gao X X,Zhang M C, Zhou S Z.J Univ Sci Technol Beijing,2006;28:850 (包小倩,李青华,朱学新,朱洁,高学绪,张茂才,周寿增.北京科技大学学报,2006;28:850)
[3]Bai G,Gao R W,Sun Y,Han G B,Wang B.J Magn Magn Mater,2007;308:20
[4]Zhou S Z,Tang W Z,Wang R.Acta Metall Sin,1990;26: 290 (周寿增,唐伟忠,王润.金属学报,1990;26:290)
[5]Pandian S,Chandrasekaran V,Markandeyulu G,Iyer K J L,Rama Rao K V S.J Appl Phys,2002;92:6082
[6]Gabay A M,Zhang Y,Hadjipanayis G C.J Magn Magn Mater,2002;238:226
[7]Pandian S,Chandrasekaran V,Markandeyulu G,Iyer K J L,Rama Rao K V S.J Alloy Compd,2004;364:295
[8]Vial F,Jolly F,Nevalainen E,Sagawa M,Hiraga K,Park K T.J Magn Magn Mater,2002;242-245:1329
[9]Zhou S Y,Zhou L,Chen S K,Luo J J.Rare Met Mater Eng,2006;35:1006 (周圣银,周廉,陈绍楷,罗建军.稀有金属材料与工程,2006;35:1006)
[10]Madaah Hosseini H R,Kianvash A,Seyyed Reihani M, Yoozbashi Zadeh H.J Alloy Compd,2000;298:319
[11]Cheng W H,Li W,Li C J,Li X M,Dong S Z.Acta Metall Sin,2001;37:1271 (成问好,李卫,李传建,李岫梅,董生智.金属学报,2001;37:1271)
[12]Hu J F ,Liu Y L,Yin M L,Wang Y Z,Hu B P,Wang Z X.J Alloy Compd,1999;288:226
[13]de Groot C H,Buschow K H J,de Boer F R,de Kort K. J Appl Phys,1998;83:388
[14]Chen Z M,Yah A R,Wang X T,Hadjipanayis G C.J Appl Phys,1997;81:4456
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!