Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (4): 457-462     DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructural morphology and irregular eutectic growth of directionally solidified Al2O3/YAG eutectic in situ composite
;;;
陕西西安西北工业大学凝固技术国家重点实验室
Cite this article: 

;. Microstructural morphology and irregular eutectic growth of directionally solidified Al2O3/YAG eutectic in situ composite. Acta Metall Sin, 2008, 44(4): 457-462 .

Download:  PDF(868KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Directionally solidified Al2O3/Y3Al5O12 (YAG) eutectic in situ composite was prepared by the laser zone remelting technique. The eutectic morphology, phase composition, interface structure, microstructure evolution and phase precipitation rule were analyzed by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), energy disperse spectroscopy (EDS) and transmission electron microscopy (TEM). The irregular microstructure morphology was quantitatively characterized by fractal dimension. Further more, the irregular eutectic growth mechanism of the oxide eutectic was detailedly discussed. The results show that the directionally solidified Al2O3/YAG eutectic in situ composite only consists of homogeneously distributed Al2O3 and YAG phases with well matched interfaces. The two phases interweave each other and coupledly grow, showing a “Chinese script” structure. The YAG phase is the primary phase during solidification. The eutectic spacing is highly refined with increasing the laser scanning rate and the minimal spacing is down to 0.2um. At low laser scanning rate, the eutectic tends to show typical lamellar irregular eutectic structure and has evident fractal characteristic, whereas, when the laser scanning rate reaches a high value of 2000um/s, the cellular and dendritic structures appear and the fractal characteristic is weaken. The faceted/faceted eutectic growth derived from the large kinetic undercooling of laser rapid solidification and high entropies of fusion of eutectic phases is the most primary factor to determine the formation of the complexly irregular eutectic morphology.
Key words:  directional solidification      Al2O3/Y3Al5O12      eutectic in situ composite      irregular eutectic      microstructu     
Received:  05 September 2007     
ZTFLH:  TB332  
  TG244.3  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I4/457

[1]Otsuka A,Waku Y,Kitagawa K,Arai N.Energy,2005; 30:523
[2]Waku Y,Nakagawa N,Wakamoto T,Ohtsubo H,Shimizu K,Kohtoku Y.Nature,1997;389:49
[3]Waku Y,Sakuma T.J Eur Ceram Soc,2000;20:1453
[4]Llorca J,Orera V M.Prog Mater Sci,2006;51:711
[5]Su H J,Zhang J,Cui C J,Liu L,Fu H Z.J Cryst Growth, 2007,307:448
[6]Larrea A,Fuente G F,Merino R I,Orera V M.J Eur Ceram Soc,2002;22:191
[7]Caslavsky J L,Viechnicki D J.J Mater Sci,1980;15: 1709
[8]Abell J S,Harris I R.J Mater Sci,1974;9:527
[9]Pastor J Y,Llorca J,Salazar A,Oliete P B,Francisco I D,Pena J I.J Am Ceram Soc,2005;88:1488
[10]Zhang J,Su H J,Liu L.J Aeronaut Mater,2003;23:171 (张军,苏海军,刘林.航空材料研究学报,2003;23:171)
[11]Yang S,Huang W D,Lin X,Su Y P,Zhou Y H.Appl Laser,1999;19:243 (杨森,黄卫东,林鑫,苏云鹏,周尧和.应用激光,1999;19:243)
[12]Francisco I D,Merino R I,Orera V M,Larrea A,Pena J I.J Eur Ceram Soc,2005;25:1341
[13]Elliott R.Eutectic Solidification Processing of Crystalline and Glassy Alloys.London:Butterworths & Co.Ltd., 1983:92
[14]Chernov A A.J Cryst Growth,1974;24/25:11
[15]Cui C J,Zhang J,Su H J,Wang H,Liu L,Fu H Z.J Inorg Mater,2007;22:1019 (崔春娟,张军,苏海军,王红,刘林,傅恒志.无机材料学报,2007;22:1019)
[16]Yin Y S,Zhang J D.Alumina Ceramic and Composites. Beijing:Chemical Industry Press,2001:5 (尹衍升,张景德.氧化铝陶瓷及其复合材料.北京:化学工业出版社,2001:5)
[17]Cockanye B,Chesswas M D,Gasson B.J Mater Sci,1968; 3:224
[18]Mandelbrot B B.The Fractal Geometry of Nature.New York:Freeman,1982:58
[19]Harimkar S P,Dahotre N B.Mater Character,2008(in press)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!