Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (2): 193-197     DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructures and Mechanical Properties of TiN/AlON Nanomultilayers synthesized by Reactive Magnetron Sputtering
Bilong Li;;;Geyang Li
上海交通大学
Cite this article: 

Bilong Li; Geyang Li. Microstructures and Mechanical Properties of TiN/AlON Nanomultilayers synthesized by Reactive Magnetron Sputtering. Acta Metall Sin, 2008, 44(2): 193-197 .

Download:  PDF(429KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ti and Al2O3 targets are used to prepare a series of TiN/AlON nanomultilayers in the gas mixture of Ar and N2 with reactive magnetron sputtering method. The formation conditions of AlON and the effects of thickness of AlON on microstructures and mechanical properties of the multilayers are evaluated and characterized by X-ray energy dispersive spectroscopy, X-ray diffraction, high resolution transmission electron microscopy and nanoindentation. The investigations show that O atom in Al2O3 will be partially replaced with N atom when sputtering Al2O3 target in the gas mixture of Ar and N2, forming amorphous AlON. In TiN/AlON nanomultilayers, when thickness of AlON is less than 0.6nm, AlON, due to the template effect of TiN crystal layer, is forced to crystallize and grow epitaxially with TiN, and the multilayers begin to show superhardness effect with a highest Hv value of 40.5GPa. With further increase of the thickness of AlON, its growth mode changes from crystal to amorphous, therefore destroying the epitaxial structure of multilayeres and leading to a decreased hardness of multilayers.
Key words:  TiN/AlON nanomultilayers      epitaxial growth      crystallization      mechanical properties      reactive magnetron s     
Received:  14 June 2007     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I2/193

[1]Layyous A A,Freinkel D M,Israel R.Surf Coat Technol, 1992;56:89
[2]Helmersson U,Todorova S,Barnett S A.J Appl Phys, 1987;62:481
[3]Sproul W D.Science,1996;273:889
[4]Sproul W D.Surf Coat Technol,1996;86-87:170
[5]Yashar P,Barnett S A,Hultman L,Sproul W D.J Mater Res,1999;14:3614
[6]Wei L,Mei F H,Shao N,Li G Y,Li J G.Acta Phys Sin, 2005;54:1742 (魏仑,梅芳华,邵楠,李戈扬,李建国.物理学报,2005;54:1742)
[7]Wei L,Kong M,Dong Y S,Li G Y.J Appl Phys,2005; 98:074302
[8]Xiao W D,Jiang X.J Cryst Growth,2004;264:165
[9]Wang X D,Wang F M,Li W C.Mater Sci Eng,2003; A342:245
[10]Kim C,Qadri S B,Scanlon M R,Cammarata R C.Thin Solid Film,1994;240:52
[11]Zhang Z Y,Lagally M G.Science,1997;276:377
[12]Koehler J S.Phys Rev,1970;B2:547
[13]Kato M,Mori T,Schwartz L H.Acta Metall,1980;28: 285
[14]Anderson P M,Li C.Nanostruct Mater,1995;5:349
[15]Madan A,Kim I W,Cheng S C.Phys Rev Lett,1997;78: 1743
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[6] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[7] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[8] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[9] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[10] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[12] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[13] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[14] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[15] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
No Suggested Reading articles found!