1.School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 2.Shanxi Province Key Laboratory of Magnetic and Electric Functional Materials and Their Applications, Taiyuan University of Science and Technology, Taiyuan 030024, China
Cite this article:
GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy. Acta Metall Sin, 2022, 58(6): 799-806.
Fe-based amorphous and nanocrystalline alloys can be used for technological applications on iron core materials owing to their high permeability, low coercivity, and core loss. However, when compared to Si-steels, their application is limited owing to low saturation magnetization. Thus, the saturation magnetization of Fe-based amorphous and nanocrystalline alloys should be improved, which may reduce the content of metalloid elements, and thus, the amorphous forming ability. Consequently, as-spun Fe-based amorphous and nanocrystalline alloys with high saturation magnetization may be incompletely amorphous. In this case, annealing processes should be modified by investigating crystallization behavior because traditional annealing processes with low heating rates may degrade ferromagnetic exchange and soft magnetic properties owing to grain-size inhomogeneity. Fe76Ga5Ge5B6P7Cu1 ribbons were fabricated using the melt spinning technique, and their crystallization behavior and mechanism were studied. Results showed that two exothermic peaks are present in the DSC curve, which correspond to the precipitation of α-Fe(Ga, Ge) and Fe(B, P) phases. Under nonisothermal conditions, the initial activation energy is greater than the apparent activation energy. According to the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, for an incomplete amorphous alloy, the crystallization process combines the growth of pre-existing nucleus and nucleation, whereas the nucleation rate decreases. Moreover, a rapid heating annealing process is conducive to the formation of a uniform and dispersed nanocrystalline structure. It was found that the magnetic properties of the annealed alloy with a heating rate of 100 K/min was better than those with 10 and 50 K/min. Further, the optimal initial permeability was 2.86 × 10-2 H/m, and the coercivity was 1.77 A/m.
Fund: Shanxi Scholarship Council of China(HGKY2019083);Key Research and Development Program of Shanxi Province(201803D421046);Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi(2021L293);Reward Fund for Outstanding Doctor in Shanxi(20212045);Doctoral Startup Foundation of Taiyuan University of Science and Technology(20202034)
About author: ZHANG Kewei, professor, Tel: (0351)2161126, E-mail: drzkw@126.comZHU Qianke, Tel: (0351)2161126, E-mail: drzhuqianke@126.com
Fig.1 XRD spectrum (a) and DSC curves (b), evolution of the characteristic crystallization temperatures (Tx1—initial exothermic temperature of the first peak, Tp1—peak temperature of the first peak, Tx2—initial exothermic temperature of the second peak, Tp2—peak temperature of the second peak) with the natural logarithm of the heating rate lnβ (β—heating rate) (c) of as-spun Fe76Ga5Ge5B6P7Cu1 ribbons, XRD spectra of Fe76Ga5Ge5B6P7Cu1 alloys annealed under different temperatures at heating rate of 100 K/min (d)
β / (K·min-1)
Tx1
Tp1
Tx2
Tp2
5
660.65
676.23
793.98
803.09
15
678.44
693.66
809.30
819.64
25
684.49
702.11
816.33
826.43
35
689.04
708.41
820.63
832.22
Table 1 The characteristic crystallization temperatures at different heating rates of as-spun Fe76Ga5Ge5B6-P7Cu1 ribbons
Fig.2 Fitting plots by Kissinger (a) and Ozawa (b) equations in as-spun Fe76Ga5Ge5B6P7Cu1 ribbons (Ex1—initial activation energy of the first peak, Ea1—apparent activation energy of the first peak, Ex2—initial activation energy of the second peak, Ea2—apparent activation energy of the second peak; T—temperature, R—gas constant, Adj.R2—goodness of fit)
Fig.3 Evolutions of crystallization fraction (α) with temperature for the first peak (a) and the second peak (b) at different heating rates
Fig.4 Evolutions of the Avrami exponent (n) as a function of α during crystallization for the first peak (a) and the second peak (b)
β / (K·min-1)
α
n
a
b
p
5
0 ≤ α ≤ 0.4
1.5 < n < 2.5
0 < a < 1
3
0.5
0.4 < α ≤ 1
n ≤ 1.5
a = 0
3
0.5
15, 25
0 ≤ α ≤ 0.2
1.5 < n < 2.5
0 < a < 1
3
0.5
0.2 < α ≤ 1
n ≤ 1.5
a = 0
3
0.5
35
0 ≤ α ≤ 0.1
1.5 < n < 2.5
0 < a < 1
3
0.5
0.1 < α ≤ 1
n ≤ 1.5
a = 0
3
0.5
Table 2 Specific parameters for characterizing the non-isothermal crystallization mechanism of the first peak
β / (K·min-1)
α
n
a
b
p
5
0 ≤ α ≤ 0.8
1.5 < n < 2.5
0 < a < 1
3
0.5
0.8 < α ≤ 1
n ≤ 1.5
a = 0
3
0.5
15
0 ≤ α ≤ 0.5
1.5 < n < 2.5
0 < a < 1
3
0.5
0.5 < α ≤ 1
n ≤ 1.5
a = 0
3
0.5
25, 35
0 ≤ α ≤ 0.3
1.5 < n < 2.5
0 < a < 1
3
0.5
0.3 < α ≤ 1
n ≤ 1.5
a = 0
3
0.5
Table 3 Specific parameters for characterizing the non-isothermal crystallization mechanism of the second peak
Fig.5 Initial permeability (μi) (a) and coercivity (Hc) (b) versus annealing temperature at different heating rates
Fig.6 TEM images, SAED patterns, and grain size distributions of Fe76Ga5Ge5B6P7Cu1 ribbons annealed at 400oC with heating rate of 10 K/min (a) and 425oC with heating rate of 100 K/min (b), and schematic of the crystallization of Fe76Ga5Ge5B6P7Cu1 alloys (c)
1
Yoshizawa Y, Yamauchi K. Fe-based soft magnetic alloys composed of ultrafine grain structure [J]. Mater. Trans. JIM, 1990, 31: 307
2
Makino A. Nanocrystalline soft magnetic Fe-Si-B-P-Cu alloys with high B of 1.8-1.9 T contributable to energy saving [J]. IEEE Trans. Magn., 2012, 48: 1331
3
Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure [J]. J. Appl. Phys., 1988, 64: 6044
doi: 10.1063/1.342149
4
Fukamichi K, Satoh T, Masumoto T. Magnetic moment of Fe-Ga-B amorphous Alloys [J]. J. Magn. Magn. Mater., 1983, 31-34: 1589
doi: 10.1016/0304-8853(83)91027-2
5
Zhu Q K, Chen Z, Li Q S, et al. Microstructure and phase dependence of magnetic softness of FeSiGaB nanocrystalline alloys [J]. J. Magn. Magn. Mater., 2021, 528: 167802
doi: 10.1016/j.jmmm.2021.167802
6
Sharma P, Zhang X, Zhang Y, et al. Competition driven nanocrystallization in high Bs and low coreloss Fe-Si-B-P-Cu soft magnetic alloys [J]. Scr. Mater., 2015, 95: 3
doi: 10.1016/j.scriptamat.2014.08.023
7
Zhang J H, Wan F P, Li Y C, et al. Effect of surface crystallization on magnetic properties of Fe82Cu1Si4B11.5Nb1.5 nanocrystalline alloy ribbons [J]. J. Magn. Magn. Mater., 2017, 438: 126
doi: 10.1016/j.jmmm.2017.04.086
8
Li H, Wang A D, Liu T, et al. Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability [J]. Mater. Today, 2021, 42: 49
doi: 10.1016/j.mattod.2020.09.030
9
Chen Z, Zhu Q K, Li Z E, et al. Effects of Si/B ratio on the isothermal crystallization behavior of FeNiSiBCuNb amorphous alloys [J]. Thermochim. Acta, 2021, 697: 178854
doi: 10.1016/j.tca.2020.178854
10
Zhang J T, Wang W M, Ma H J, et al. Isochronal and isothermal crystallization kinetics of amorphous Fe-based alloys [J]. Thermochim. Acta, 2010, 505: 41
doi: 10.1016/j.tca.2010.03.023
11
Henderson D W. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids [J]. J. Non-Cryst. Solids, 1979, 30: 301
doi: 10.1016/0022-3093(79)90169-8
12
Pratap A, Lad K N, Rao T L S, et al. Kinetics of crystallization of amorphous Cu50Ti50 alloy [J]. J. Non-Cryst. Solids, 2004, 345-346: 178
doi: 10.1016/j.jnoncrysol.2004.08.018
13
Jin J S, Li F W, Yin G, et al. Influence of substitution of Cu by Ni on the crystallization kinetics of TiZrHfBeCu high entropy bulk metallic glass [J]. Thermochim. Acta, 2020, 690: 178650
doi: 10.1016/j.tca.2020.178650
14
Paul T, Loganathan A, Agarwal A, et al. Kinetics of isochronal crystallization in a Fe-based amorphous alloy [J]. J. Alloys Compd., 2018, 753: 679
doi: 10.1016/j.jallcom.2018.04.133
15
Dong Q, Song P, Tan J, et al. Non-isothermal crystallization kinetics of a Fe-Cr-Mo-B-C amorphous powder [J]. J. Alloys Compd., 2020, 823: 153783
doi: 10.1016/j.jallcom.2020.153783
16
Zhu Q K, Chen Z, Zhang S L, et al. Improving soft magnetic properties in FINEMET-like alloys with Ga addition [J]. J. Magn. Magn. Mater., 2019, 487: 165297
doi: 10.1016/j.jmmm.2019.165297
17
Fan X D, Jiang M F, Zhang T, et al. Thermal, structural and soft magnetic properties of FeSiBPCCu alloys [J]. J. Non-Cryst. Solids, 2020, 533: 119941
doi: 10.1016/j.jnoncrysol.2020.119941
18
Chen F G, Wang Y G. Investigation of glass forming ability, thermal stability and soft magnetic properties of melt-spun Fe83P16 - x Si x -Cu1 (x = 0, 1, 2, 3, 4, 5) alloy ribbons [J]. J. Alloys Compd., 2014, 584: 377
doi: 10.1016/j.jallcom.2013.09.089
19
Lopatina E, Soldatov I, Budinsky V, et al. Surface crystallization and magnetic properties of Fe84.3Cu0.7Si4B8P3 soft magnetic ribbons [J]. Acta Mater., 2015, 96: 10
doi: 10.1016/j.actamat.2015.05.051
20
Kong L H, Gao Y L, Song T T, et al. Non-isothermal crystallization kinetics of FeZrB amorphous alloy [J]. Thermochim. Acta, 2011, 522: 166
doi: 10.1016/j.tca.2011.02.013
21
Zhu Q K, Chen Z, Zhang S L, et al. Crystallization progress and soft magnetic properties of FeGaBNbCu alloys [J]. J. Magn. Magn. Mater., 2019, 475: 88
doi: 10.1016/j.jmmm.2018.11.105
22
Li W, Xie C X, Liu H Y, et al. Minor-metalloid substitution for Fe on glass formation and soft magnetic properties of Fe-Co-Si-B-P-Cu alloys [J]. J. Non-Cryst. Solids, 2020, 533: 119937
doi: 10.1016/j.jnoncrysol.2020.119937
23
Wang R W, Liu J, Xu Y P, et al. Effect of V substitution for Nb on the crystallization kinetics of FINEMET amorphous alloys [J]. J. Funct. Mater., 2010, 12: 2109
Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15 [J]. Mater. Sci. Eng., 1976, 23: 173
doi: 10.1016/0025-5416(76)90189-0
25
Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal. Chem., 1957, 29: 1702
doi: 10.1021/ac60131a045
26
Ozawa T. Kinetic analysis of derivative curves in thermal analysis [J]. J. Therm. Anal., 1970, 2: 301
doi: 10.1007/BF01911411
27
Nakamura K, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition [J]. J. Appl. Polym. Sci., 1973, 17: 1031
doi: 10.1002/app.1973.070170404
28
Blázquez J S, Conde C F, Conde A. Non-isothermal approach to isokinetic crystallization processes: Application to the nanocrystallization of HITPERM alloys [J]. Acta Mater., 2005, 53: 2305
doi: 10.1016/j.actamat.2005.01.037
29
Chen Z, Zhu Q K, Zhang K W, et al. The non-isothermal and isothermal crystallization behavior and mechanism of Fe-Ni Alloys [J]. Cryst. Growth Des., 2020, 20: 2187
doi: 10.1021/acs.cgd.9b01059
30
Duarte M J, Kostka A, Crespo D, et al. Kinetics and crystallization path of a Fe-based metallic glass alloy [J]. Acta Mater., 2017, 127: 341
doi: 10.1016/j.actamat.2017.01.031
31
Herzer G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets [J]. IEEE Trans. Magn., 1990, 26(5): 1397
ZHOU Shouzeng;TANG Weizhong;WANG Run University of Science and Technology Beijing associate professor;Department of Materials Science;University of Science and Technology Beijing; Beijing 100083. BOUNDARY MICROSTRUCTURE AND MAGNETIC HARDENING OF SINTERED NdFeB MAGNET[J]. 金属学报, 1990, 26(4): 148-152.