Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (11): 1404-1408     DOI:
论文 Current Issue | Archive | Adv Search |
Study on Microstructure and Mechanical Properties of Friction Stir Welded Aluminium Alloy Thick Plate
西北工业大学材料学院
Cite this article: 

. Study on Microstructure and Mechanical Properties of Friction Stir Welded Aluminium Alloy Thick Plate. Acta Metall Sin, 2008, 44(11): 1404-1408 .

Download:  PDF(2975KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microstructure of weld nugget zone and mechanical properties of the whole and slice in the thick plate joints obtained by friction stir welding (FSW) were studied. The results show that the tensile strength σb, yield strength σ0.2 and elongation δ decrease with increasing weld speed when the rotary speed is constant. The maximum σb, σ0.2 and δ lie in the top weld and reach 186.7MPa, 100.3MPa and 14.1% respectively, while the minimum σb, σ0.2 and δ in the bottom joint only attain 157.5MPa, 80.2MPa and 10.1% separately. The fracture morphologies show that there are lots of meshy dimple and the deepest locates in the top joint. The secondary intercrystalline crack and quasi-cleavage face lie in the root of weld. The microhardness at the top is higher than that at the bottom and presents asymmetrically through the weld centerline. The fine and equiaxial grain size is bigger at the top than that at the bottom and clings together at the root of weld. Compared with the bottom, second-phase particle at the top redissolves into the matrix abundantly and the strengthening effect boosts up.

Key words:  friction stir weld      thick aluminum plate      microstructure      mechanical properties     
Received:  05 May 2008     
ZTFLH: 

TG146.2

 
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I11/1404

[1]Kaibyshev R,Sitdikov O,Mazurina I,Lesuer D R.Mater Sci Eng,2002;A334:104
[2]Trzil J J.Weld J,1969;44(6):395
[3]Nunes A C.Weld J,1984;63(9):27
[4]Paglia C S,Buchheit R G.Mater Sci Eng,2006;A429: 107
[5]Elangovan K,Balasubramanian V.Mater Sci Eng,2007; A459:7
[6]Chen Y C,Liu H J,Feng J C.Trans Nonferrous Met Soc China,2005;15:75
[7]Zhang Z,Liu Y L,Zhang H W.Acta Metall Sin,2007;43: 868 (张昭,刘亚丽,张洪武.金属学报,2007;43:868)
[8]He D Q,Deng H,Zhou P Z.Trans China Weld Inst,2007; 28:13 (贺地求,邓航,周鹏展.焊接学报;2007;28:13)
[9]Zhao P,Xie F Z,Sun W S.Fundamentals of Materials Science.Harbin:Harbin Institute of Technology Press, 1999:133 (赵品,谢福洲,孙文山.材料科学基础.哈尔滨:哈尔滨工业大学出版社,1999:133)
[10]Yutaka S S,Mitsunori U,Hiroyuki K,Keisuke I.Mater Sci Eng,2003;A354:298
[11]Wang K S,Liu J S,Xu K W,Shen Y.Rare Met Mater Eng,2004;33:1344 (王快社,刘军帅,徐可为,沈洋.稀有金属材料与工程,2004;33:1344)
[12]Xu X C,Liu Z Y,Dang P,Yu W B,Ning A L.Trans Mater Heat Treat,2006;27:73 (许晓嫦,刘志义,党朋,于文斌,宁爱林.材料热处理学报,2006;27:73)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!