Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (9): 989-993     DOI:
Research Articles Current Issue | Archive | Adv Search |
Study on Inhibition of New Type Compound Inhibitor in NaCl Solution
中国海洋大学化学与化工学院
Cite this article: 

. Study on Inhibition of New Type Compound Inhibitor in NaCl Solution. Acta Metall Sin, 2007, 43(9): 989-993 .

Download:  PDF(262KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The inhibitive effect of G105 steel was studied in 31(wt)% NaCl solution based on new compound inhibitor including ZnSO4, CaGL, APG, Na2SiO3, Na2WO4. And inhibitory mechanism was analyzed by polarization curve and EIS. Kramers-Kronig transforms have been developed to apply the in the analysis of experimental electrochemical impedance data. XRD and EDS were carried out to examine corrosion products formed on the surface and adsorbed inhibitor. The results showed that compound inhibitor was mixed-type inhibitor and the inhibition efficiency was above 80% at 80℃. The impedance data do not satisfy Kramers-Kronig transforms. Corrosion product was mainly Fe3O4, content of elements in inhibitors filmed on electrode surface increased with concentration of inhibitors.
Key words:  31% NaCl      G105      new compound inhibitor      polarization      EIS      Kramers–Kronig     
Received:  27 December 2006     
ZTFLH:  TG174  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I9/989

[1]Fu C Y,Zheng J S,Yao A L.Chem Eng Oil Gas,2000; 29:257 (傅朝阳,郑家燊,姚安林.石油与天然气化工,2000;29:257)
[2]Durnie W,de Marco R,Kinsella B,Jefferson A,Pejcic B. J Electrochem Soc,2005;152B:1
[3]Jiang X,Zheng Y G,Ke W.Corrosion,2005;61:326
[4]Kuznetsov Y I,Andreev N N,Ibatullin K A,Oleinik S V. Prot Met,2002;38:322
[5]Quraishi M A,Sharma H K.Indian J Chem Technol,2005; 12(1):98
[6]Hu G Y,Zhou L F.Chin Surf Deterg Cosmet,1989;(3): 106 (胡耿源,周黎芳.日用化学工业,1989;(3):106)
[7]Bruzzoni P,Carranza R M,Collet Lacoste J R,Crespo E A.Electrochim Acta,2002;48:341
[8]Kerry N A,Darryl P B,Mark E O.Electrochim Acta, 2006;51:1497
[9]Xu C C,He H P.Surf Technol,2005;34(3):33 (许淳淳,何海平.表面技术,2005;34(3):33)
[10]Kendig M,Mansfeld F,Tsai S.Corros Sci,1983;23:317
[11]Wang J.J Chin Soc Corros Prot,1989;9:271 (王佳.中国腐蚀与防护学报,1989;9:271)
[12]Zhao Y T,Wu J H,Wang J.Electrochemistry,2001;7: 472 (赵永韬,吴建华,王佳.电化学,2001;7:472)
[13]Bastidas J M,Polo J L,Tortes C L,Cano E.Corros Sci, 2001;43:269
[14]Zlatanovic M,Popovic N,Bogdanovb Z,Zlatanovic S.Surf Coat Technol,2003;174-175:1220
[15]Ziemniak S E,Hanson M.Corros Sci,2002;44:2209
[16]Sarina P,Snoeyinkb V L,Bebee J.Water Res,2004;38: 1259
[17]Rokuro N,Daisuke S,Yasuaki M.Corros Sci,2004;46: 225
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[4] GAO Bowen, WANG Meihan, YAN Maocheng, ZHAO Hongtao, WEI Yinghua, LEI Hao. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1541-1550.
[5] Xiuling SHANG,Bo ZHANG,Wei KE. Effect of Sb-Rich Intermetallic Phase on the CorrosionResistance of Zn Alloy in Near-Neutral and Acidic Solutions[J]. 金属学报, 2017, 53(3): 351-357.
[6] Jiazhen WANG,Jianqiu WANG,En-Hou HAN. CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃[J]. 金属学报, 2016, 52(5): 599-606.
[7] Shengbo CEN,Hui CHEN,Yan LIU,Yuanming MA,Ying WU. EFFECT OF CeO2 ON CORROSION BEHAVIOR OF WC-12Co COATINGS BY HIGH VELOCITY OXYGEN FUEL[J]. 金属学报, 2016, 52(11): 1441-1448.
[8] FU Xinxin, DONG Junhua, HAN En-hou, KE Wei. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MONITORING ON MILD STEEL Q235 IN SIMULATED INDUSTRIAL ATMOSPHERIC CORROSION ENVIORNMENT[J]. 金属学报, 2014, 50(1): 57-63.
[9] LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT[J]. 金属学报, 2014, 50(1): 64-70.
[10] ZHOU Xiaowei,SHEN Yifu. CORROSION BEHAVIOR AND EIS STUDY OF NANOCRYSTALLINE Ni-CeO2 COATINGS IN AN ACID NaCl SOLUTION[J]. 金属学报, 2013, 49(9): 1121-1130.
[11] WEI Xin, DONG Junhua, TONG Jian, ZHENG Zhi,KE Wei. INFLUENCE OF TEMPERATURE ON PITTING CORROSION RESISTANCE OF Cr26Mo1 ULTRA PURE HIGH CHROMIUM FERRITE STAINLESS STEEL IN 3.5%NaCl SOLUTION[J]. 金属学报, 2012, 48(4): 502-507.
[12] ZHAO Bo DU Cuiwei LIU Zhiyong LI Xiaogang YANG Jike LI Yueqiang. CORROSION BEHAVIOR OF X80 STEEL IN YINGTAN SOIL SIMULATED SOLUTION UNDER DISBONDED COATING[J]. 金属学报, 2012, 48(12): 1530-1536.
[13] WANG Changgang DONG Junhua KE Wei CHEN Nan LI Xiaofang. RESEARCH ON PITTING CORROSION BEHAVIOR OF COPPER IN THE SOLUTION WITH HCO3- AND Cl-[J]. 金属学报, 2012, 48(11): 1365-1373.
[14] ZHU Xuemei CAO Xuemei LIU Ming LEI Mingkai ZHANG Yansheng. AN ANTIFERROMAGNETIC Fe24Mn4Al5Cr COVAR ALLOY IMPULSE--PASSIVATED BY AN ALTERNATING CURRENT VOLTAGE OVERLAPPING A DIRECT CURRENT VOLTAGE AND ITS CORROSION RESISTANCE[J]. 金属学报, 2012, 48(11): 1357-1364.
[15] BAI Yun LI Shujun HAO Yulin YANG Rui. ELECTROCHEMICAL CORROSION BEHAVIOR OF A NEW BIOMEDICAL Ti-24Nb-4Zr-8Sn ALLOY IN HANKS SOLUTION[J]. 金属学报, 2012, 48(1): 76-84.
No Suggested Reading articles found!