Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (4): 502-507    DOI: 10.3724/SP.J.1037.2011.00489
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF TEMPERATURE ON PITTING CORROSION RESISTANCE OF Cr26Mo1 ULTRA PURE HIGH CHROMIUM FERRITE STAINLESS STEEL IN 3.5%NaCl SOLUTION
WEI Xin1,2, DONG Junhua1, TONG Jian1, ZHENG Zhi1,KE Wei1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2. College of Materials Science and Engineering, Dalian University ofTechnology, Dalian 116024
Cite this article: 

WEI Xin, DONG Junhua, TONG Jian, ZHENG Zhi,KE Wei. INFLUENCE OF TEMPERATURE ON PITTING CORROSION RESISTANCE OF Cr26Mo1 ULTRA PURE HIGH CHROMIUM FERRITE STAINLESS STEEL IN 3.5%NaCl SOLUTION. Acta Metall Sin, 2012, 48(4): 502-507.

Download:  PDF(665KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The remarkable uniform corrosion resistance of ultra pure high chromium ferrite stainless steel in various rigorous corrosive environments is based on the formation of a passive film on its surface. However, it is suspected that this stainless steel was easy to suffer from pitting corrosion. In this work, the influences of temperature on the pitting corrosion resistance of Cr26Mo1 ultra pure high chromium ferrite stainless steel were studied by electrochemical methods such as cyclic polarization curves, Mott-Schottky curves and electrochemical impedance spectroscopy in 3.5%NaCl solution. The results showed that with the increase of the temperature, open-circuit corrosion potential and pitting corrosion potential decreased, corrosion current density increased, the impedance of passive film decreased. The semi-conductive styles and properties of passive film changed at different temperatures. Also, the pregnancy time of pitting shortened and the sensitivity of pitting increased remarkably as the temperature increased. In addition, the cyclic polarization curves indicated that the repassivation of existing pits was more difficult when the potential was swept toward the negative direction.
Key words:  ultra pure high chromium ferrite stainless steel      passive film      cyclic polarization      pitting corrosion     
Received:  27 July 2011     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00489     OR     https://www.ams.org.cn/EN/Y2012/V48/I4/502

[1] Ilevbare G O, Burstein G T.  Corros Sci, 2003; 45: 1545

[2] Sekine I, Okano C, Yuasa M.  Corros Sci, 1990; 30: 351

[3] Hiraide N.  World Iron Steel, 2004; 6: 33

[4] You X M, Jiang Z H, Li H B, Shen M H, Cao Y.  China Metall,2006; 16(11): 16

    (游香米, 姜周华, 李花兵, 申明辉, 曹阳. 中国冶金, 2006; 16(11): 16 )

[5] Latanision R M, Kloppers M J, Bellucci F.  Corrosion, 1992; 48: 229

[6] Kaneko M, Isaaca H S.  Corros Sci, 2002; 44: 1825

[7] Shan Y T, Luo X H, Hu X Q, Liu S.  J Mater Sci Technol, 2011; 27: 352

[8] Ernst P, Newman R C.  Corros Sci, 2007; 49: 3705

[9] Rosenfeld I L, Danilov I S, Oranskaya R N.  J Electrochem Soc,1978; 125: 1728

[10] Stockert L, Hunkeler F, Bohni H.  Corrosion, 1985; 41: 676

[11] Carmezim M J, Simoes A M, Montemor M F, Da C B M.  Corros Sci,2005; 47: 581

[12] Ferreira M G S, Hakiki N E, Goodlet G, Faty S, Simoes A M P, Da C B M. Electrochim Acta, 2001; 46: 3767

[13] McCafferty E.  Corros Sci, 2003; 45: 301

[14] Jin B, Zheng M S, Zhu J W.  Corros Sci Prot Technol, 2006; 18: 348

     (金波, 郑茂盛, 朱杰武. 腐蚀科学与防护技术, 2006; 18: 348)

[15] Lin Y H, Du R G, Hu R G, Lin C J.  Acta Phys Chim Sin, 2005; 21: 740

     (林玉华, 杜荣归, 胡融刚, 林昌健. 物理化学学报, 2005; 21: 740)

[16] Li W S, Luo J L.  Electrochem Commun, 1999; 1: 349

[17] Paola A P, Shukla D, Stimming U.  Electrochim Acta, 1991; 36: 345

[18] Sunseri C, Piazza S, Di Quarto F.  J Electrochem Soc,1990; 137: 2411

[19] Montemor M F, Ferreira M G S, Hakiki N E, Da C B M.  Corros Sci,2000; 42: 1635

[20] Macdonald D D, Urquidi-Macdonald M.  J Electrochem Soc,1990; 137: 2395

[21] Eghbali F, Moayed M H, Davoodi A, Ebrahimi N.  Corros Sci,2011; 53: 513

[22] Moayed M H, Newman R C.  Corros Sci, 2006; 48: 1004

[23] Cao C N.  Principles of Electrochemistry of Corrosion.Beijing: Chemical Industry Press, 2008: 248

     (曹楚南, 腐蚀电化学原理, 北京: 化学工业出版社, 2008: 248)

[24] Eghbali F, Moayed M H, Davoodi A, Ebrahimi N.  Corros Sci,2011; 53: 513

[25] Ningshen S, Mudali U K, Mittal V K, Khatak H S.  Corros Sci,2007; 49: 481
 
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[4] TANG Yanbing, SHEN Xinwang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, ZOU Jiasheng, XU Jing. Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution[J]. 金属学报, 2022, 58(3): 324-333.
[5] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[6] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
[7] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[8] FENG Hao,LI Huabing,LU Pengchong,YANG Chuntian,JIANG Zhouhua,WU Xiaolei. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa[J]. 金属学报, 2019, 55(11): 1457-1468.
[9] Jiang XU, Xike BAO, Shuyun JIANG. In Vitro Corrosion Resistance of Ta2N Nanocrystalline Coating in Simulated Body Fluids[J]. 金属学报, 2018, 54(3): 443-456.
[10] Dahai XIA, Shizhe SONG, Jianqiu WANG, Jingli LUO. Research Progress on Sulfur-Induced Corrosion of Alloys 690 and 800 in High Temperature and High Pressure Water[J]. 金属学报, 2017, 53(12): 1541-1554.
[11] Yongjun CHEN, Xiaogang HU, Jianbing QIANG, Chuang DONG. QUASICRYSTAL ABRASIVE POLISHING ON SOFT METALS VIA A CHARACTERISTIC SMEARING WEAR MECHANISM FOR EFFICIENT SURFACE FLATTENING, HARDENING AND CORROSION ENHANCEMENT[J]. 金属学报, 2016, 52(10): 1353-1362.
[12] Nan PIAO,Ji CHEN,Chengjiang YIN,Cheng SUN,Xinghang ZHANG,Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION[J]. 金属学报, 2015, 51(9): 1077-1084.
[13] Haiwei HUANG, Zhenbo WANG, Li LIU, Xingping YONG, Ke LU. FORMATION OF A GRADIENT NANOSTRUCTURED SURFACE LAYER ON A MARTENSITIC STAINLESS STEEL AND ITS EFFECTS ON THE ELECTRO- CHEMICAL CORROSION BEHAVIOR[J]. 金属学报, 2015, 51(5): 513-518.
[14] XIN Sensen, LI Moucheng, SHEN Jianian. EFFECT OF TEMPERATURE AND CONCENTRATION RATIO ON PITTING RESISTANCE OF 316L STAINLESS STEEL IN SEAWATER[J]. 金属学报, 2014, 50(3): 373-378.
[15] WANG Binbin, WANG Zhenyao, CAO Gongwang, LIU Yanjie, KE Wei. LOCALIZED CORROSION OF ALUMINUM ALLOY 2024 EXPOSED TO SALT LAKE ATMOSPHERIC ENVIRONMENT IN WESTERN CHINA[J]. 金属学报, 2014, 50(1): 49-56.
No Suggested Reading articles found!