Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (9): 1121-1130    DOI: 10.3724/SP.J.1037.2013.00101
Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR AND EIS STUDY OF NANOCRYSTALLINE Ni-CeO2 COATINGS IN AN ACID NaCl SOLUTION
ZHOU Xiaowei,SHEN Yifu
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
Cite this article: 

ZHOU Xiaowei,SHEN Yifu. CORROSION BEHAVIOR AND EIS STUDY OF NANOCRYSTALLINE Ni-CeO2 COATINGS IN AN ACID NaCl SOLUTION. Acta Metall Sin, 2013, 49(9): 1121-1130.

Download:  PDF(2717KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pure Ni and Ni-CeO2 nanocrystalline coatings were prepared from a Watts-nickel electrolyte using ultrasonic-assisted pulse electro deposition. Effect of incorporating CeO2 addition on their corrosion behavior in a 3.5%NaCl+1.5%HCl (mass fraction) solution was evaluated by electrochemical impedance spectroscopy (EIS) and equivalent electric circuits (EECs). Meanwhile, static immersion tests and the analysis of corrosion products were carried out. Experimental results indicated that the existence of CeO2 phase in the Ni coatings promoted an effective dispersion strengthening after aged at 600℃ for 4 h in air, and also produced a continuous Ce-rich oxide sale acted as the passive layer covered on the coating surface to reduce pinholes or micro cracks that generated from hydrogen evolution reactions during electrochemical deposition, hence resulting in the decrease of localized corrosion or intergranular attack by Cl-. Based on the observed results from potentiodynamic polarization curves, they exhibited an obvious passivation transition attached with a reducing corrosion current density by lower than 1.5 orders of magnitude of Ni-CeO2 coatings (600℃) as relative to pure Ni. EIS measurements for pure Ni displayed a high frequency capacitive arc together with a middle-low frequency diffusion arc. While for the Ni-CeO2 coatings, they displayed module of capacitive arc with a wide frequency area of phase angle close to 90° so as to confirm superior anti-corrosion property. During long-term static immersion tests in an acid NaCl solution, a small amount of Ce3+ released from CeO2 phase were served as the corrosion inhibitors by means of making strong adsorption onto the exposed area for increasingcorrosion resistance. With the presence of CeO2 addition, slightly uniform corrosion was observed on the surface of Ni-CeO2 coatings as compared to severely pitting corrosion of pure Ni. According to the determination of corrosion products by XRD and XPS, both of their corrosion products were mainly composed of NiCl2 and Ni(OH)2, while some insoluble products of CeCl3 and CeO2 phase generated on the surface of Ni-CeO2 coatings, thereby achieving such insoluble corrosion products covered on pitting holes of localized corrosion to preclude the exposed area from corrosive attack and diffusion behavior by Cl-.

Key words:  nanocrystalline coating      corrosion behavior      electrochemical impedance spectroscopy (EIS)      RE adsorption, inhibition mechanism     
Received:  04 March 2013     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00101     OR     https://www.ams.org.cn/EN/Y2013/V49/I9/1121

[1] Dutta R S, Tewari R, De P K.  Corros Sci, 2007; 49: 303

[2] Jin H M, Chen R F, Zhang J F, Felix A C.  Mater Mech Eng, 2004; 28: 7
(靳惠明, 陈荣发, 张剑峰, Felix A C. 机械工程材料, 2004; 28: 7)
[3] Qu N S, Zhu D, Chan K C.  Scr Mater, 2006; 54: 1421
[4] Sen R, Das S, Das K.  Mater Res Bull, 2012; 47: 478
[5] Xue Y J, Liu H B, Lan M M, Ku X C, Li J S.  Chin J Nonferrous Met, 2010; 20: 1599
(薛玉君, 刘红彬, 兰明明, 库祥臣, 李济顺. 中国有色金属学报, 2010; 20: 1599)
[6] Sen R, Das S, Das K.  Surf Coat Technol, 2011; 205: 3847
[7] Mihalache V, Pasuk I.  Acta Mater, 2011; 59: 4875
[8] Arsenault R J.  Scr Metall Mater, 1991; 25: 2617
[9] Aruna S T, William Grips V K, Ezhil Selvi V, Rajam K S.  J Appl Electrochem, 2007; 37: 991
[10] Dias S A S, Lamak S V, Nogueira C A , Diamantinoa T C, Ferreira M G S.Corros Sci, 2012; 62: 153
[11] Zhou X W, Shen Y F, Gu D D.  Acta Metall Sin, 2012; 48: 957
(周小卫, 沈以赴, 顾冬冬. 金属学报, 2012; 48: 957)
[12] Zhou X W, Shen Y F, Zheng Y Y, Jin H M.  J Rare Earths, 2011; 29: 883
[13] Yu X W, Cao C N, Lin H C.  Chin Rare Earths, 2000; 18: 243
(于兴文, 曹楚南, 林海潮. 稀土学报, 2000; 18: 243)
[14] Simon J, Elizabeth A K, William G F, Matthew J O.  Corros Sci, 2012; 60: 290
[15] Stern M, Geary A L.  J Electrochem Soc, 1957; 104: 56.
[16] Yong X Y, Liu J J, Lin Y Z.  Acta Metall Sin, 2005; 41: 871
(雍兴跃, 刘景军, 林玉珍. 金属学报, 2005; 41: 871)
[17] Aruna S T, Bindu C N, Ezhil Selvi V, William Grips V K, Rajam K S.Surf Coat Technol, 2006; 200: 6871
[18] Conde A, Damborenea J.  Corros Sci, 2000; 42: 1363
[19] Gray J J, Orme C A.  Electrochimica Acta, 2007; 52: 2370
[20] Wang B, Liu Q Y, Mao X P, Weng Y, Wang X D, Jia S J, Dong H.  Acta Metall Sin, 2008; 44: 863
(汪兵, 刘清友, 毛新平, 翁宇, 王向东, 贾书君, 董瀚. 金属学报, 2008; 44: 863)
[21] Czerwinski F, Szpunar J A.  Thin Solid Films, 1996; 289: 213
[22] Czerwinski F, Smeltzer W W.  Oxid Met, 1993; 40: 503
[23] Hinton B R W, Arnott D R, Ryan N E.  Mater Form, 1986; 9: 162
[24] Zamanzad-Ghavidel M R, Raeissi K, Saatchi A.  Mater Lett, 2009; 63: 1807
[25] Hasannejad H, Shahrabi T, Jafarian M, Sabour Rouhaghdam A.  J Alloys Compd,2011; 509: 1924
[26] Muhamed A P, Shibli S M A.  Electrochem Commun, 2007; 9: 443
[27] Thanneeru R, Patil S, Deshpande S, Seal S.  Acta Mater, 2007; 55: 3457
[1] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[2] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
[3] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[4] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[5] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[6] BAI Yang, WANG Zhenhua, LI Xiangbo, LI Yan. Corrosion Behavior of Al(Y)-30%Al2O3 Coating Fabricated by Low Pressure Cold Spray Technology[J]. 金属学报, 2019, 55(10): 1338-1348.
[7] Suqiang ZHANG,Hongyun ZHAO,Fengyuan SHU,Guodong WANG,Wenxiong HE. Effect of Welding Thermal Cycle on Corrosion Behavior of Q315NS Steel in H2SO4 Solution[J]. 金属学报, 2017, 53(7): 808-816.
[8] Hongxia WAN,Dongdong SONG,Zhiyong LIU,Cuiwei DU,Xiaogang LI. Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment[J]. 金属学报, 2017, 53(5): 575-582.
[9] Linyuan HAN, Xuan LI, Chenglin CHU, Jing BAI, Feng XUE. Corrosion Behavior of AZ31 Magnesium Alloy in Dynamic Conditions[J]. 金属学报, 2017, 53(10): 1347-1356.
[10] Tianguo WEI,Jiankang LIN,Chongsheng LONG,Hongsheng CHEN. EFFECT OF DISSOLVED OXYGEN IN STEAM ON THE CORROSION BEHAVIORS OF ZIRCONIUM ALLOYS[J]. 金属学报, 2016, 52(2): 209-216.
[11] FU Xinxin, DONG Junhua, HAN En-hou, KE Wei. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MONITORING ON MILD STEEL Q235 IN SIMULATED INDUSTRIAL ATMOSPHERIC CORROSION ENVIORNMENT[J]. 金属学报, 2014, 50(1): 57-63.
[12] HAO Xuehui, DONG Junhua, WEI Jie, KE Wei, WANG Changgang,XU Xiaolian, YE Qibin. INFLUENCE OF MICROSTRUCTURE OF AH32 CORROSION RESISTANT STEEL ON CORROSION BEHAVIOR[J]. 金属学报, 2012, 48(5): 534-540.
[13] ZHAO Bo DU Cuiwei LIU Zhiyong LI Xiaogang YANG Jike LI Yueqiang. CORROSION BEHAVIOR OF X80 STEEL IN YINGTAN SOIL SIMULATED SOLUTION UNDER DISBONDED COATING[J]. 金属学报, 2012, 48(12): 1530-1536.
[14] GAO Xinliang ZHU Miaoyong FU Guiqin WANG Feng DENG Zhiyin. CORROSION BEHAVIOR OF BRIDGE WEATHERING STEELS IN ENVIRONMENT CONTAINING Cl-[J]. 金属学报, 2011, 47(5): 520-527.
[15] WANG Changgang DONG Junhua KE Wei CHEN Nan. EFFCTS OF pH AND Cl CONCENTRATION ON THE CORROSION BEHAVIOR OF COPPER IN BORIC ACID BUFFER SOLUTION[J]. 金属学报, 2011, 47(3): 354-360.
No Suggested Reading articles found!