Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (1): 76-84    DOI: 10.3724/SP.J.1037.2011.00530
论文 Current Issue | Archive | Adv Search |
ELECTROCHEMICAL CORROSION BEHAVIOR OF A NEW BIOMEDICAL Ti-24Nb-4Zr-8Sn ALLOY IN HANKS SOLUTION
BAI Yun1, 2),  LI Shujun1), HAO Yulin1), YANG Rui1)
1) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Chemistry Department, Anshan Normal University, Anshan 114005
Cite this article: 

BAI Yun LI Shujun HAO Yulin YANG Rui. ELECTROCHEMICAL CORROSION BEHAVIOR OF A NEW BIOMEDICAL Ti-24Nb-4Zr-8Sn ALLOY IN HANKS SOLUTION. Acta Metall Sin, 2012, 48(1): 76-84.

Download:  PDF(2306KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Titanium and its alloy have been widely used in medical applications owing to their light weight, low elastic modulus, good corrosion resistance and biocompatibility. A new multifunctional β-type titanium alloy Ti-24Nb-4Zr-8Sn has been developed recently for intention of biomedical applications. In comparison with the previously reported alloys, it possesses better biomechanical properties of high strength and low elastic modulus. Since corrosion resistance of biomaterials in human body environment plays important role on bio-safety, it is crucial to evaluate their corrosion behavior in simulated body fluid (SBF). In this paper, the electrochemical corrosion behavior of Ti-24Nb-4Zr-8Sn alloy was investigated in Hanks solution at 37 ℃ by utilizing potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques while XPS, XRD and SEM were employed to analyze the surface morphology, composition and phase constituent. Both commercially  pure titanium (CP-Ti) and Ti-6Al-4V alloy were also investigated to make a comparison. Ti-24Nb-4Zr-8Sn alloy has equiaxed microstructure with the averaged grain size about 200 $\mu$m. In Hanks solution, it exhibits a typical active-passive characterization by the formation of a protective passive film. XPS analyses revealed the passive film mainly consisting of TiO2, Nb2O5 and a little quantity of ZrO2 and SnO2. Since the formation of Nb5+ cations that locate in the crystal lattice of titanium oxide, can cause a decrease in the concentration of defects in the passive film and makes it more stoichiometric and stable, Ti-24Nb-4Zr-8Sn alloy presents much wider passivation region than CP-Ti and Ti-6Al-4V alloy, and its corrosion current density is only 0.049 µA/cm2 which is equal to that of CP-Ti. The EIS results indicated the presence of a double layer passive film with a porous outer layer and a dense inner one on the surface of Ti-24Nb-4Zr-8Sn alloy. The resistance of the dense inner layer can reach to the order of 106 Ω·cm2, which is much higher than that of the porous outer layer. This indicates that the corrosion resistance of Ti-24Nb-4Zr-8Sn alloy is determined mainly by the dense inner layer. With the immersion time increasing, the inner barrier layer became thicker and its resistance increased, resulting in the improvement of corrosion resistance. The study also found that some of the micro-defects formed in the outer porous layer changed to macro cracks and caused a rapid breakaway of the porous layer due to the binding force between two layers decreasing.
Key words:  Ti-24Nb-4Zr-8Sn alloy      Hanks solution      potentiodynamic polarization      EIS     
Received:  19 August 2011     
ZTFLH: 

TG 146.2+3

 
Fund: 

Supported by National Basic Research Program of China (Nos.2012CB619103 and 2012CB933901), High Technology Research and Development Program of China (No.2011AA030106), National Natural Science Foundation of China (Nos.51071152 and 50901080) and Natural Science Foundation of Liaoning Province (No.20092075)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00530     OR     https://www.ams.org.cn/EN/Y2012/V48/I1/76

[1] Fekry A M, Ei–Sherif R M. Electrochim Acta, 2009; 54: 7280

[2] Mu Z Q, Liang C H. Corros Sci Prot Technol, 1998; 10: 103

(牟战旗, 梁成浩. 腐蚀科学与防护技术, 1998; 10: 103)

[3] Shukla A K, Balasubramaniam R, Bhargava S. Intermetallics, 2005; 13: 631

[4] Cai Z, Shafer T, Watanabe L, Nunn M E, Okabe T. Biomaterials, 2003; 24: 213

[5] Tamilselvi S, Murugaraj R, Rajendran N. Mater Corros, 2007; 58: 113

[6] Sumner D, Gatante J. Clin Orthop Rel Res, 1992; 274: 124

[7] Wang K. Mater Sci Eng, 1996; A213: 134

[8] Niinomi M. Mater Sci Eng, 1998; A243: 231

[9] Hao Y L, Li S J, Sun S Y. Acta Biomater, 2007; 3: 277

[10] Hao Y L, Li S J, Sun S Y. Mater Sci Eng, 2006; A441: 112

[11] Semlitsch M F, Weber H, Streicher R M, Schon R. Biomaterials, 1992; 13: 781

[12] Gurappa I. Mater Charact, 2002; 49: 73

[13] Mareci D, Ungureanu G, Aelenei D M, Rosca J CM. Mater Corros, 2007; 58: 848

[14] Gonzalez J E G, Mirza–Rosca J C. J Electroanal Chem, 1999; 471: 109

[15] Koike M, Cai Z, Fujii H, Brezner M, Okabe T. Biomaterials, 2003; 24: 4541

[16] Choubey A, Balasubramaniam R, Basui B. J Alloy Compd, 2004; 381: 288

[17] Pourbaix M. Biomaterials, 1984; 5: 122

[18] Metikos–Hukovic M, Kwokal A, Piljac J. Biomaterials, 2003; 24: 3765

[19] Macdonald D D. J Electrochem Soc, 1992; 139: 3434

[20] Cheng Y C, Zhang C B, Hu J, Tang C B, Gao B. Chin J Conserv Dent, 2010; 20: 84

(程义成, 张春宝, 胡 江, 唐长斌, 高 勃. 牙体牙髓牙周病学杂志, 2010; 20: 84)

[21] Alves V A, Reis R Q, Santos J C B, Souza D G. Corros Sci, 2009; 51: 2473

[22] Tamilselvi S, Rajendran N. Mater Corros, 2007; 58: 285

[23] Assis S L, Costa I. Mater Corros, 2007; 58: 329

[24] Zhu Z Q, Xue W B, Lu L, Du J C, Liu G J, Li W F. Acta Metall Sin, 2011; 47: 74

(朱振庆, 薛文斌, 鲁亮, 杜建成, 刘贯军, 李文芳. 金属学报, 2011; 47: 74)

[25] Pouilleau J, Devilliers D, Garrido F, Durand–Vidal S, Mahe E. Mater Sci Eng, 1997; B47: 235

[26] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueoussolution. Brussels: Pergamon Press Ltd, 1966: 49

[27] Freitas M, Bulhoes L. J Appl Electrochem, 1997; 27: 612

[28] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 26: 1009

(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料工程, 2006; 26: 1009)
[1] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[2] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[3] GAO Bowen, WANG Meihan, YAN Maocheng, ZHAO Hongtao, WEI Yinghua, LEI Hao. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1541-1550.
[4] Xiuling SHANG,Bo ZHANG,Wei KE. Effect of Sb-Rich Intermetallic Phase on the CorrosionResistance of Zn Alloy in Near-Neutral and Acidic Solutions[J]. 金属学报, 2017, 53(3): 351-357.
[5] FU Xinxin, DONG Junhua, HAN En-hou, KE Wei. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MONITORING ON MILD STEEL Q235 IN SIMULATED INDUSTRIAL ATMOSPHERIC CORROSION ENVIORNMENT[J]. 金属学报, 2014, 50(1): 57-63.
[6] LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT[J]. 金属学报, 2014, 50(1): 64-70.
[7] ZHOU Xiaowei,SHEN Yifu. CORROSION BEHAVIOR AND EIS STUDY OF NANOCRYSTALLINE Ni-CeO2 COATINGS IN AN ACID NaCl SOLUTION[J]. 金属学报, 2013, 49(9): 1121-1130.
[8] ZHAO Bo DU Cuiwei LIU Zhiyong LI Xiaogang YANG Jike LI Yueqiang. CORROSION BEHAVIOR OF X80 STEEL IN YINGTAN SOIL SIMULATED SOLUTION UNDER DISBONDED COATING[J]. 金属学报, 2012, 48(12): 1530-1536.
[9] HUANG Fa WANG Jianqiu HAN En-Hou KE Wei. EFFECTS OF Cl- CONCENTRATION AND TEMPERATURE ON THE CORROSION BEHAVIOR OF ALLOY 690 IN BORATE BUFFER SOLUTION[J]. 金属学报, 2011, 47(7): 809-815.
[10] WANG Changgang DONG Junhua KE Wei CHEN Nan. EFFCTS OF pH AND Cl CONCENTRATION ON THE CORROSION BEHAVIOR OF COPPER IN BORIC ACID BUFFER SOLUTION[J]. 金属学报, 2011, 47(3): 354-360.
[11] ZHU Qingzhen XUE Wenbin LU Liang DU Jiancheng LIU Guanjun LI Wenfang. PREPARATION OF MICROARC OXIDATION COATING ON (Al2O3-SiO2)sf/AZ91D MAGNESIUM MATRIX COMPOSITE AND ITS ELECTROCHEMICAL IMPEDANCE SPECTROSCOPIC ANALYSIS\par[J]. 金属学报, 2011, 47(1): 74-80.
[12] YANG Bo LI Moucheng YAO Meiyi ZHOU Bangxin SHEN Jianian. IN SITU IMPEDANCE CHARACTERISTICS OF ZIRCONIUM ALLOY CORROSION IN HIGH TEMPERATURE AND PRESSURE WATER ENVIRONMENT[J]. 金属学报, 2010, 46(8): 946-950.
[13] WAN Xiansong SHI Yuying MA Jun LI Haiqing GONG Jun SUN Chao. SALT SPRAY CORROSION BEHAVIOUR OF CrN COATINGS DEPOSITED BY ARC ION PLATING[J]. 金属学报, 2010, 46(5): 600-606.
[14] ZHOU Jianlong LI Xiaogang DU Cuiwei LI Yunling LI Tao PAN Ying. ANODIC ELECTROCHEMICAL BEHAVIOR OF X80 PIPELINE STEEL IN NaHCO3 SOLUTION[J]. 金属学报, 2010, 46(2): 251-256.
[15] ZOU Yan ZHENG Yingying WANG Yanhua WANG Jia. CATHODIC ELECTROCHEMICAL BEHAVIORS OF MILD STEEL IN SEAWATER[J]. 金属学报, 2010, 46(1): 123-128.
No Suggested Reading articles found!