Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1530-1536    DOI: 10.3724/SP.J.1037.2012.00374
Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF X80 STEEL IN YINGTAN SOIL SIMULATED SOLUTION UNDER DISBONDED COATING
ZHAO Bo 1,2, DU Cuiwei 1,2, LIU Zhiyong 1,2, LI Xiaogang 1,2, YANG Jike 1,2, LI Yueqiang 1,2
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
2. MOE Key Laboratory of Corrosion and Protection, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

ZHAO Bo DU Cuiwei LIU Zhiyong LI Xiaogang YANG Jike LI Yueqiang. CORROSION BEHAVIOR OF X80 STEEL IN YINGTAN SOIL SIMULATED SOLUTION UNDER DISBONDED COATING. Acta Metall Sin, 2012, 48(12): 1530-1536.

Download:  PDF(4478KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this work, a rectangular crevice disbanded coating model of buried steel pipeline in Yingtan soil simulated solution was made, and the in situ electrochemical measurement of electrochemical impedance spectroscopy (EIS) was used for characterization of X80 steel under the disbonded coating, at the same time, the corrosion behavior was also investigated. The results showed that the electrochemical characteristics in each position of disbonded area was almost same in the early corrosion time, and the EIS was composed of high–frequency capacitance and low–frequency inductance. After corrosion occurred, the high–frequency capacitance radius increased, and the low–frequency inductance disappeared. The extent of corrosion of X80 steel specimen surface was rather distinct with distance from holiday. The corrosion at holiday and the bottom of disbonded area was most serious because of oxygen corrosion and anodic dissolution. However, in the central, it was weaker. After removing the corrosion product, pits appeared obviously on the specimen surface in the central of disbonded area,indicating that the tendency of pitting occurring increased, and the type of corrosion changed from general corrosion to localized corrosion. According to the EIS and experimental results, the corrosion process under disbanded area could be divided into three steps: oxygen depletion, anion migration and corrosion expansion.

Key words:  disbonded coating      corrosion      in situ electrochemical test      electrochemical impedance spectroscopy (EIS)     
Received:  25 June 2012     
ZTFLH:  TG172.4  
Fund: 

Supported by National Natural Science Foundation of China (Nos.51131001 and 50971016) and Fundamental Research Funds for the Central Universities (No.FRF–TP–09–029B)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00374     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1530

[1] Chin D T, Sabde G M. Corrosion, 2000; 56: 783

[2] Bervers J A, Thompson N G. Mater Perform, 1997; 36(4): 13

[3] Deflorian F, Rossi S. Electrochim Acta, 2006; 51: 1736

[4] Galvele J R. Corros Sci, 2005; 47: 3053

[5] Fu A Q, Cheng Y F. Corros Sci, 2010; 52: 2511

[6] Puiggali M, Rousserie S, Touzet M. Corrosion, 2002; 58: 961

[7] Song F M, Sridhar N. Corros Sci, 2008; 50: 70

[8] Song Y Q, Du C W, Zhang X, Li X G. Acta Metall Sin, 2009; 45: 1130

(宋义全, 杜翠薇, 张新, 李晓刚. 金属学报, 2009; 45: 1130)

[9] Li Z F, Gan F X, Mao X H. Corros Sci, 2002; 44: 689

[10] Song F M. Corros Sci, 2012; 57: 279

[11] Perdomo J J, Song I. Corros Sci, 2000; 42: 1389

[12] Chen C M, Beck F H, Fontana M G. Corrosion, 1971; 27: 234

[13] Pickering H W. Corros Sci, 1989; 29: 325

[14] Oldfield J W, Sutton W H. Brit Corros J, 1978; 13: 13

[15] Wang R G. Corros Sci, 2008; 50: 325

[16] He X, Dunn D S, Csontos A A. Electrochim Acta, 2007; 52: 7556

[17] Chen X, Li X G, Du C W, Cheng Y F. Corros Sci, 2009; 51: 2242

[18] Han D, Jiang Y M, Shi C, Deng B, Li J. J Mater Sci, 2012; 47: 1018

[19] Song F M. Corros Sci, 2012; 55: 107

[20] Chen X, Li X G, Du C W, Liang P. Acta Metall Sin, 2008; 44: 1431

(陈 旭, 李晓刚, 杜翠薇, 梁平. 金属学报, 2008; 44: 1431)

[21] Fu A Q, Tang X, Cheng Y F. Corros Sci, 2009; 51: 186

[22] Yang M Z, Luo J L, Wilmott M. J Mater Sci Lett, 1998; 17: 1091

[23] Yang M Z, Wilmott M, Luo J L. Thin Solid Films, 1998; 326: 180

[24] Sun J B, Liu W, Yang L Y, Yang J W, Lu M X. Acta Metall Sin, 2008; 44: 991

(孙建波, 柳伟, 杨丽颖, 杨建炜, 路民旭. 金属学报, 2008; 44: 991)

[25] Hegazy M A. Corros Sci, 2009; 51: 2610

[26] Cheng S, Tian J T, Chen S G, Lei Y H, Chang X T, Liu T, Yin Y S. Mater Sci Eng, 2009; 29: 751

[27] Bai Z Q, Chen C F, Lu M X, Li J B. Appl Surf Sci, 2006; 252: 7578

[28] Sawford M K, Ateya B G, Abdullah A M, Pickering H W. J Electrochem Soc, 2002; 149: 198

[29] Al–Zahrani A M, Pickering H W. Electrochim Acta, 2005; 50: 3420

[30] Kennell G F, Evitts R W, Heppner K L. Corros Sci, 2008; 50: 1716

[31] Abdulsalam M I. Corros Sci, 2005; 47: 1336

[32] Gao X L, Zhu M Y, Fu G Q, Wang F, Deng Z Y. Acta Metall Sin, 2011; 47: 520

(高新亮, 朱苗勇, 付贵勤, 汪锋, 邓志银. 金属学报, 2011; 47: 520)

[33] Gan F, Sun Z W, Sabde G. Corrosion, 1994; 50: 804

[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[3] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[4] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[5] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[6] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[7] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[8] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[9] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[10] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[11] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[12] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[13] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!