Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 64-70    DOI: 10.3724/SP.J.1037.2013.00416
Original Articles Current Issue | Archive | Adv Search |
EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT
LIU Xiahe, WU Xinqiang(), HAN En-hou
Enviromental Corrosion center, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LIU Xiahe, WU Xinqiang, HAN En-hou. EFFECTS OF TEMPERATURE ON LECTROCHEMICAL CORROSION OF DOMESTIC NUCLEAR-GRADE 316L STAINLESS STEEL IN Zn-INJECTED AQUEOUS ENVIRONMENT. Acta Metall Sin, 2014, 50(1): 64-70.

Download:  HTML  PDF(6062KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of temperature (T) on oxide films for 316L stainless steel (316L SS) in borated and lithiated water without and with Zn injection were investigated by in situ potentiodynamic polarization curves and electrochemical impedance spectra (EIS). The protective property of oxide films in the Zn-free/Zn-injected solution degraded with increasing temperature. With increasing temperature, the structure of the oxide film varied from a single layer to double layers, the Cr-rich oxide layer played a key role on retarding further oxidation. Compared to the Zn-free case, the corrosion rate decreased significantly in the Zn-injected solution due to the formation of compact Zn-bearing oxide films, but the instinct growth mechanism of the oxide films remained unchangeable. The solubilities and structure model of oxides were proposed to discuss the formation mechanism of oxide films on 316L SS in the hydrothermal solution.

Key words:  316L stainless steel      Zn-injected water chemistry      EIS      potentiodynamic polarization curve      oxide film     
Received:  16 July 2013     
ZTFLH:  TG172.9  
Fund: Supported by National Natural Science Foundation of China (No.51371174), National Science and Technology Major Project (No.2011ZX06004-017) and National Basic Research Program of China (No.2011CB610505)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00416     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/64

Fig.1  

316L SS在323.15~603.15 K区间, B+Li水环境中预氧化48 h后的极化曲线

Fig.2  

316L SS在B+Li水环境中预氧化48 h后的ip, EcorrT的关系

Fig.3  

无Zn和加Zn还原性水环境中已形成稳定氧化物表面的金属的Evans图解

Fig.4  

316L SS在323.15~603.15 K区间, B+Li水环境中预氧化48 h后的Nyquist图

Fig.5  

阻抗谱的等效电路

T / K Rs / 102 Ω C1 / 10-7 n1 R1 / 102 Ω C2 / 10-5 n2 R2 / 104 Ω
323.15 12.61 654.73 0.657 0.05 11.35 0.988 7.66
423.15 5.63 550.87 0.781 0.01 12.96 0.970 6.04
473.15 2.43 87.76 0.571 8.24 16.22 0.952 4.77
523.15 2.08 25.97 0.555 5.96 22.58 0.736 1.98
573.15 1.01 13.86 0.597 4.50 59.32 0.597 0.14
603.15 0.91 9.31 0.470 3.58 76.45 0.597 0.11
表1  316L SS在323.15~603.15 K, B+Li水环境中氧化膜EIS等效电路的拟合结果
T / K Rs / 102 Ω C1 / 10-7 n1 R1 / 102 Ω C2 / 10-5 n2 R2 / 104 Ω
323.15 11.43 756.74 0.686 0.04 13.90 0.876 8.23
423.15 2.51 678.73 0.524 0.01 14.51 0.850 7.51
473.15 2.31 56.82 0.621 9.18 18.33 0.974 5.25
523.15 1.05 8.99 0.737 5.68 34.39 0.905 2.75
573.15 0.89 6.67 0.642 4.65 66.34 0.817 0.18
603.15 0.76 5.56 0.678 3.95 79.32 0.976 0.14
表2  316L SS在323.15~603.15 K, B+Li加Zn水中氧化膜EIS等效电路的拟合结果
  

在298.15~603.15 K, 无Zn或加Zn水环境中316L SS表面可能形成的氧化物的溶解度

Fig.7  

298.15~573.15 K水环境中316L SS表面氧化膜形成图解

[1] Millett P, Wood C, Frattini P, Ocken H, Gaudreau T. Report, TR-107329, Palo Alto: EPRI, 1997
[2] Fruzzetti K. Report, 1009933, Palo Alto: EPRI, 2005
[3] Liu X H, Wu X Q, Han E-H.Electrochim Acta, 2013; 108: 554
[4] Liu X H, Han E-H, Wu X Q.Corros Sci, 2014; 78: 200
[5] Odar S, Cowan R, Kysela J. Report, AP 2010, Mölnlycke: ANT International, 2010
[6] Qiao P P, Zhang L F, Liu R Q, Jiang S Q, Zhu F W.Atomic Energy Sci Technol, 2010; 44: 690
(乔培鹏, 张乐福, 刘瑞芹, 姜苏青, 朱发文. 原子能科学技术, 2010; 44: 690)
[7] Liu X H, Wu X Q, Han E-H.Corros Sci Protect Technol, 2011; 23: 287
(刘侠和, 吴欣强, 韩恩厚. 腐蚀科学与防护技术, 2011; 23: 287)
[8] Tan Y. PhD Dissertation, North China Electric Power University, Beijing, 2012
(檀 玉. 华北电力大学博士学位论文, 北京, 2012)
[9] Robertson J.Corros Sci, 1991; 32: 443
[10] Kim D J, Kwon H C, Kim H P.Corros Sci, 2008; 50: 1221
[11] Sun H, Wu X Q, Han E-H.Corros Sci, 2009; 51: 2840
[12] Macdonald D D, Scott A C, Wentrcek P.J Electrochem Soc, 1979; 126: 908
[13] Xu J, Wu X Q, Han E H.Electrochim Acta, 2012; 71: 219
[14] Robertson J.Corros Sci, 1989; 29: 1275
[15] Simões A M P, Ferreira M G S, Lorang G, da Cunha Belo M.Electrochim Acta, 1991; 36: 315
[16] Mahmoud N S, El-Fawal M M, Gadalla A R A.Nat Sci, 2011; 9: 27
[17] Ford F P, Scott P M, Combrade P. Report, Lr100920, Mölnlycke: ANT International, 2010
[18] Park J J, Pyun S I, Lee S B.Electrochim Acta, 2004; 49: 281
[19] Jonscher A K.Phys Status Solidi, 1975; 32A: 665
[20] Carranza R M, Alvarez M G.Corros Sci, 1996; 38: 909
[21] Cubicciotti D. J Nucl Mater, 1993; 201: 176
[22] Stellwag B.Corros Sci, 1998; 40: 337
[23] Beverskog B. In: Wood C ed., Proc Int Conf Water Chemistry of Nuclear Reactor Systems, San Francisco: EPRI, 2004: 414
[24] Liu X H, Wu X Q, Han E-H.Corros Sci, 2012; 65: 136
[25] Liu X H, Wu X Q, Han E-H.Corros Sci, 2011; 53: 3337
[26] Inagaki H, Nishikawa A, Sugita Y, Tsuji T.J Nucl Sci Technol, 2003; 40: 143
[27] Miyajima K, Hirano H. Int Conf, 01143, Corrosion, Houston: NACE International, 2001
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[3] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[4] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[5] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[6] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[7] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[8] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[9] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[10] GAO Bowen, WANG Meihan, YAN Maocheng, ZHAO Hongtao, WEI Yinghua, LEI Hao. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1541-1550.
[11] Dan LI, Yang LI, Rongsheng CHEN, Hongwei NI. Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER[J]. 金属学报, 2018, 54(8): 1179-1186.
[12] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU. Morphological Characteristics and Size Distributions of Three-Dimensional Grains and Grain Boundaries in 316L Stainless Steel[J]. 金属学报, 2018, 54(6): 868-876.
[13] Xiaoyi ZHANG, Hailong SHANG, Bingyang MA, Rongbin LI, Geyang LI. Brazing of Coated Al Foil Filler to AlN Ceramic[J]. 金属学报, 2018, 54(4): 575-580.
[14] Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU, Yonghao LU. Distribution Characteristics of Twin-Boundaries in Three-Dimensional Grain Boundary Network of 316L Stainless Steel[J]. 金属学报, 2018, 54(10): 1377-1386.
[15] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
No Suggested Reading articles found!