Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1441-1448    DOI: 10.11900/0412.1961.2016.00031
Orginal Article Current Issue | Archive | Adv Search |
EFFECT OF CeO2 ON CORROSION BEHAVIOR OF WC-12Co COATINGS BY HIGH VELOCITY OXYGEN FUEL
Shengbo CEN,Hui CHEN(),Yan LIU,Yuanming MA,Ying WU
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Cite this article: 

Shengbo CEN,Hui CHEN,Yan LIU,Yuanming MA,Ying WU. EFFECT OF CeO2 ON CORROSION BEHAVIOR OF WC-12Co COATINGS BY HIGH VELOCITY OXYGEN FUEL. Acta Metall Sin, 2016, 52(11): 1441-1448.

Download:  HTML  PDF(1596KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High velocity oxygen fuel (HVOF) sprayed WC-Co coating has been widely used in the surface protection of components for excellent corrosion resistance and wear resistance. However, with the increasing deteriorated service environment, higher comprehensive properties of WC-Co coating are required. Addition of rare earth elements into WC-Co powder is expected to be an effective way. In this work, the micro WC-12Co, nano modified WC-12Co and CeO2 modified WC-12Co coatings were prepared by HVOF on the Q345 steel substrate. The microstructure, corrosion morphology and phase structure of coatings were observed by SEM and XRD, and the micro-hardness is measured. The corrosion behavior of the coatings in 1 mol/L H2SO4 solution was investigated by polarization test and immersion corrosion test. The results show that the addition of nano-sized CeO2 in the WC-12Co coating not only purifies the grain boundary and increases the micro hardness, but also significantly reduces the porosity of the coating, which can effectively decrease the occurrence of local corrosion. Meanwhile, the addition of nano CeO2 can make the electrode potential of coatings shift positively, reduce the corrosion current density and passivation current density, and then improve the corrosion resistance of the coating. The corrosion mechanism of nano CeO2 modified WC-12Co coating is local corrosion which induced by the pore. Co bonding phase at the pore is constantly being corroded, causing WC particles to lose the support function and to fall off, which promotes the corrosion of the coating, so that the pores are enlarged to form corrosion pits. For the micro WC-12Co coating and nano modified WC-12Co coating, not only the outermost layer of the Co bonding phase is corroded, but also serious local corrosion occurred in the pores.

Key words:  high      velocity      oxygen      fuel      (HOVF),      WC-12Co      coating,      nano-size      CeO2,      polarization      curve,      immersion      corrosion     
Received:  18 January 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51474178 and 51505393) and Fundamental Research Funds for the Central Universities (No.A0920502051513-4)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00031     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1441

Powder Code WC-Co CeO2 Power size / μm WC size / μm
Micro WC-12Co C 100% - 30~60 1~2
Nano modified WC-12Co N 100% - 15~45 0.05~0.5
CeO2 modified WC-12Co Re 99% 1% 30~60 1~2
Table 1  Composition and particle size of powders
Fig.1  SEM images of C powder (a), N powder (b) and Re power (c)
Fig.2  Low (a, c, e) and high (b, d, f) magnified cross sectional SEM images of C coating (a, b), N coating (c, d) and Re coating (e, f)
Element Atomic fraction Mass fraction
C 38.93 18.50
O 33.33 12.38
Co 15.61 21.37
W 11.60 46.07
Table 2  EDS analysis results of floccules
Fig.3  The surface (a) and local (b) morphologies of Re coating
Fig.4  XRD spectra of three coatings
Coating Corrosion potential Ecorr / mV Current density
icorr / (μAcm-2)
Initiating passivation current density iIP / (μAcm-2) Passivation current density iP / (μAcm-2)
C -734 5.92 116.3 70.3
N 47 9.37 377.2 220.3
Re 350 4.53 53.2 30.6
Table 3  Electrochemical parameters of coatings in the H2SO4 solution
Fig.5  Polarization curves of coatings in 1 mol/L H2SO4 solution
Fig.6  LSCM images of coatings before (a, c, e) and after (b, d, f) immersion
oating Mass variation
Δm / mg
Corrosion rate
Vc / (mgm-2h-1)
C 0.6 55.8
N 0.8 74.4
Re 0.4 37.2
Table 4  Mass loss of the coatings in 1 mol/L H2SO4 solution
Fig.7  Surface morphologies of coatings before (a, c, e) and after (b, d, f) immersion

(a, b) C coating (c, d) N coating (e, f) Re coating

[1] Diomidis N, Celis J P, Ponthiaux P, Wenger F.Wear, 2010; 269: 93
[2] Cui Y J, Wang C L, Tang Z H, Zhang X Y.J Mater Eng, 2011; (11): 85
[2] (崔永静, 王长亮, 汤智慧, 张晓云. 材料工程, 2011; (11): 85)
[3] Wang Q, Chen Z H, Ding Z X.Tribol Int, 2009; 42: 1046
[4] Ibrahim A, Berndt C C.Mater Sci Eng, 2007; A456: 114
[5] Yang Q Q, Senga T, Ohmori A.Wear, 2003; 254: 23
[6] Deng C M, Han T, Zhang X F, Liu M.Therm Spray Technol, 2013; 5(4): 12
[6] (邓春明, 韩滔, 张小峰, 刘敏. 热喷涂技术, 2013; 5(4): 12)
[7] Wang X H, Liu A M, Qian S K, Jiang D Q, Zhu H S.Trans Mater Heat Treat, 2014; 35(10): 167(汪新衡, 刘安民, 钱书琨, 蒋冬青, 朱航生. 材料热处理学报, 2014; 35(10): 167)
[8] Zhang L M, Sun D B, Yu H Y, Li H Q.Mater Sci Eng, 2007; A457: 319
[9] Zhang Z Y, Lu X C, Luo J B.Appl Surf Sci, 2007; 253: 4377
[10] Chen H.PhD Dissertation, Sichuan University, Chengdu, 2008
[10] (陈辉. 四川大学博士学位论文, 成都, 2008)
[11] Ji S C, Li Z X, Du J H.Rare Met Mater Eng, 2012; 41: 2000
[11] (姬寿长, 李争显, 杜继红. 稀有金属材料与工程, 2012; 41: 2000)
[12] Rands C, Webb B W, Maynes D.Int J Heat Mass Transfer, 2006; 49: 2924
[13] De Villiers Lovelock H L.J Therm Spray Technol, 1998; 7: 357
[14] Wan Q L, Zhang L, Wang Z, Xu T, Zhang Z J.Cem Carbides, 2014; 31: 201
[14] (万庆磊, 张立, 王喆, 徐涛, 张忠健. 硬质合金, 2014; 31: 201)
[15] Li S H, Shao D C.Ordnance Mater Sci Eng, 1999; 22(6): 15
[15] (李淑华, 邵德春. 兵器材料科学与工程, 1999; 22(6): 15)
[16] Kellner F J J, KillIlan M S, Yang G, Spiecker E, Virtanen S.Int J Refract Met Hard Mater, 2011; 29: 376
[17] Sutthiruangwong S, Mori G, Kosters R.Int J Refract Met Hard Mater, 2005; 23: 129
[18] Xu Y W, Wang H M.Rare Met Mater Eng, 2007; 36: 660
[18] (徐亚伟, 王华明. 稀有金属材料与工程, 2007; 36: 660)
[19] Zhang Z Y, Wang Z P, Liang B Y.Rare Met, 2008; 27: 261
[20] Zhao T U, Cai X, Wang S X.Thin Solid Films, 2000; 379: 128
[21] Xu X R, Huang N C, Yang S M.Heat Treat Technol Equip, 2006; 27(3): 8
[21] (徐向荣, 黄拿灿, 杨少敏. 热处理技术与装备, 2006; 27(3): 8)
[22] Wang X H, Kuang J X, He H L, Zhu H S.Mater Prot, 2009; 42(2): 13
[22] (汪新衡, 匡建新, 何鹤林, 朱航生. 材料保护, 2009; 42(2): 13)
[23] Liu W J, Cao F H, Chang L R, Zhang Z, Zhang J Q.Corros Sci, 2009; 51: 1334
[24] Zhao G M, Wang K L, Li C G.J Chin Soc Rare Earths, 2004; 22: 254
[24] (赵高敏, 王昆林, 李传刚. 中国稀土学报, 2004; 22: 254)
[25] Li G H, Yan L Y, Zhang H X, Li F C. Powder Metall Technol, 1994; 12: 206
[25] (李规华, 严兰英, 张鸿绪, 李福春. 粉末冶金技术, 1994; 12: 206)
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[6] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[9] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[10] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[13] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[14] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[15] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
No Suggested Reading articles found!