Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (8): 839-846     DOI:
Research Articles Current Issue | Archive | Adv Search |
STUDY ON NON-SINUSOIDAL OSCILLATION FOR SLAB CONTINUOUS CASTING MOLD WITH HIGH CASTING SPEED Ⅰ. Mechanism of Oscillation Marks Formation
Xiang-Ning MENG;;Xu-Dong LIU
东北大学材料与冶金学院
Cite this article: 

Xiang-Ning MENG; Xu-Dong LIU. STUDY ON NON-SINUSOIDAL OSCILLATION FOR SLAB CONTINUOUS CASTING MOLD WITH HIGH CASTING SPEED Ⅰ. Mechanism of Oscillation Marks Formation. Acta Metall Sin, 2007, 43(8): 839-846 .

Download:  PDF(829KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Oscillation marks formation for slab continuous casting with high casting speed was expatiated through stress analyses of initial solidifying meniscus shell during an oscillation cycle with stabilizing casting status at 2.0 m•min-1 casting speed, and the “Extra Liquid Volume” model about position of oscillation marks formation was explained. The results show that ferrostatic pressure, friction force and flux channel pressure act on shell bring on oscillation marks along with solidification progress, and the marks position primarily lies on solidified mass fraction of solidifying shell mushy zone.
Key words:  continuous casting mold      non-sinusoidal oscillation      high casting speed      oscillation marks formation      fr     
Received:  26 December 2006     
ZTFLH:  TF777  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I8/839

[1]Takeuchi E,Brimacombe J K.Metall Trans,1985;16B: 605
[2]Lei Z S,Ren Z M,Zhang B W,Deng K.Acta Metall Sin, 2002;38:877 (雷作胜,任忠鸣,张邦文.邓康.金属学报,2002;38:877)
[3]Schwerdtfeger K,Sha H.Metall Mater Trans,2000;31B: 813
[4]Badri A,Natarajan T T,Snyder C C,Powers K D,Man- nion F J,Byrne M,Cramb A W.Metall Mater Trans, 2005;36B:373
[5]Takeuchi E,Brimacombe J K.Metall Trans,1984;15B: 493
[6]Suzuki M,Mizukami H,Kitagawa T,Kawakami K,Uchida S,Komatsu Y.ISIJ Int,1991;31:254
[7]Zhu L G,Wang S M,Jin S T.J Univ Sci Technol Beijing, 1999;21:13 (朱立光,王硕明,金山同.北京科技大学学报,1999;21:13)
[8] Meng X N,Zhu M Y,Liu X D,Cheng N L,Jiang Z K. Acta Metall Sin,2007;43:205 (孟祥宁,朱苗勇,刘旭东,程乃良,江中块.金属学报,2007;43:205)
[9]Zhang J M,Zhang L,Wang X H,Wang L F.Acta Metall Sin,2003;39:1285 (张炯明,张立,王新华,王立峰.金属学报,2004;39:1285)
[10]Bikerman J J.Physical Surfaces.London:Academic Press,1970:12
[11]Cramb A W,Jimbo I.Steel Res,1989;60:157
[12]Meng X N,Zhu M Y.Chin J Process Eng,2006; 6(Suppl.1):91 (孟祥宁,朱苗勇.过程工程学报,2006;6(增刊1):91)
[13]Meng X N,Zhu M Y.Chin Mech Eng,in press (孟祥宁,朱苗勇.中国机械工程,待发表)
[14]Szekeres E S.Iron Steel Eng,1996;73:29
[15]Meng X N,Zhu M Y.J Iron Steel Res,in press (孟祥宁,朱苗勇.钢铁研究学报,待发表)
[1] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[3] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[4] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[5] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[6] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[7] LI Huizhao, WANG Caimei, ZHANG Hua, ZHANG Jianjun, HE Peng, SHAO Minghao, ZHU Xiaoteng, FU Yiqin. Research Progress of Friction Stir Additive Manufacturing Technology[J]. 金属学报, 2023, 59(1): 106-124.
[8] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[9] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[10] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[11] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[12] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[13] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[14] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[15] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
No Suggested Reading articles found!