Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (5): 673-682    DOI: 10.11900/0412.1961.2021.00207
Research paper Current Issue | Archive | Adv Search |
Creep Behavior of FGH96 Superalloy at Different Service Conditions
PENG Zichao1(), LIU Peiyuan2, WANG Xuqing1, LUO Xuejun1, LIU Jian1, ZOU Jinwen1()
1.Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2.Aviation Military Representative Office of the PLA in Beijing, Beijing 100012, China
Cite this article: 

PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions. Acta Metall Sin, 2022, 58(5): 673-682.

Download:  HTML  PDF(4862KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The FGH96 superalloy is extensively used as a gas turbine disk under high temperature due to its excellent tensile and creep properties. With recent developments in the aviation industry, the velocity of the aircraft has increased significantly, thereby increasing the temperature and stress on the turbine disk materials during their service. Therefore, creep deformation is crucial in the turbine disk superalloy. In this study, the creep characteristics of FGH96 superalloy were systematically studied at 650-750oC and 690-810 MPa and the creep mechanism of the alloy under different service conditions was investigated via SEM, EBSD, and TEM. For the creep temperature of 704oC, the creep properties of the alloy decreased with the increase in stress level. When the applied loading stress was 690 MPa, the creep properties of FGH96 alloy decreased significantly with the increase in temperature, and its steady-state creep strain rate was more sensitive to the service temperature. Further, every 30oC increase in the service temperature increased the creep rate by an order of magnitude. For the temperature in the range 650-750oC and the applied loading stress in the range 690-810 MPa, the creep deformation of the alloy was dominated by dislocation slip and resulted in various micro-twins on the continuous (111¯) planes. Moreover, the creep fracture of FGH96 alloy presented typical intergranular fracture under different service conditions in this study.

Key words:  FGH96 superalloy      creep mechanism      service condition      fracture feature     
Received:  17 May 2021     
ZTFLH:  TG132.32  
About author:  ZOU Jinwen, ZOU Jinwen, professor, Tel: (010)62498270, E-mail: zoujw613@sina.com
PENG Zichao, senior engineer, Tel: (010)62498272, E-mail: pengzichaonba7@hotmail.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00207     OR     https://www.ams.org.cn/EN/Y2022/V58/I5/673

Fig.1  Creep sample and analysis method (RD—rolling direction, ND—normal direction, TD—transverse direction)
T / °Cσ / MPaεc
7046903% and fracture
720
750
780
810
6506901% and fracture
670
720
750
Table 1  The schedule of creep test
Fig.2  OM (a) and SEM (b) images of the microstructure of FGH96 superalloy with 1160oC solution, and the size distribution of γ' precipitates (c)
Fig.3  The creep curves of FGH96 superalloy tested at 704oC, 690-810 MPa (a) and 690 MPa, 650-750oC (b)
Fig.4  Relationship between steady creep strain rate and loading stress (a) and temperature (b)
T / oCσ / MPaγ˙ / s-1T / oCσ / MPaγ˙ / s-1
7046903.76 × 10-96506904.19 × 10-11
7207.82 × 10-96706.72 × 10-10
7501.76 × 10-87043.76 × 10-9
7802.74 × 10-87203.01 × 10-8
8104.98 × 10-87501.24 × 10-7
Table 2  Steady creep strain rates (γ˙) at different creep conditions
Fig.5  Kernel average misorientation (KAM) maps and inverse pole figures (IPFs) of FGH96 alloy with 1.0% crept strain under various loading stresses at 704oC
(a) 690 MPa (b) 720 MPa (c) 750 MPa (d) 780 MPa (e) 810 MPa
Fig.6  TEM images of FGH96 alloy with 1.0% crept strain under various loading stresses at 704oC
(a) 690 MPa (b) 720 MPa (c) 750 MPa (d) 780 MPa (e) 810 MPa
(f) HRTEM and selected area electron diffraction (SAED) pattern (inset) of the area in Fig.6e (Arrow [21¯1] shows the dislocation slip direction of stacking fault, [1¯11¯] and [111¯] represent the normal directions of (1¯11¯) and (111¯) faces)
Fig.7  KAM and IPF analyses of FGH96 alloy with 1.0% crept strain under the stress of 690 MPa and various temperatures
(a) 650℃ (b) 670℃ (c) 704℃ (d) 720℃ (e) 750℃
Fig.8  Microtwins in FGH96 superalloy after creep at 690 MPa and various temperatures
(a) 650oC (b) 670oC (c) 704oC (d) 720oC (e) 750oC
(f) HRTEM and selected area electron diffraction (SAED) pattern of the area in Fig.8d (Arrow [21¯1] shows the dislocation slip direction of stacking fault, [111¯] and [1¯11¯] represent the normal directions of (111¯) and (1¯11¯) faces)
Fig.9  Fractographs of primary stages of FGH96 superalloy tested at different temperatures and stresses
(a) 650oC, 690 MPa (b) 750oC, 690 MPa (c) 704oC, 690 MPa (d) 704oC, 810 MPa
1 Zheng X L. Mechanical Properties of Materials [M]. 2nd Ed., Xi'an: Northwestern Polytechnical University Press, 1999: 114
郑修麟. 材料的力学性能 [M]. 第2版. 西安: 西北工业大学出版社, 1999: 114
2 Qu J S, Che X L, Song B. Effect of temperature and stress on creep behavior of welding joint in stainless steel [J]. Weld. Joining, 2003, (1): 17
屈金山, 车小莉, 宋 兵. 温度和应力对不锈钢焊接接头蠕变行为的影响 [J]. 焊接, 2003, (1): 17
3 Azadi M, Azadi M. Evaluation of high-temperature creep behavior in Inconel-713C nickel-based superalloy considering effects of stress levels [J]. Mater. Sci. Eng., 2017, A689: 298
4 Tian T, Hao Z B, Ge C C, et al. Effects of stress and temperature on creep behavior of a new third-generation powder metallurgy superalloy FGH100L [J]. Mater. Sci. Eng., 2020, A776: 139007
5 Hou Z P, Zhang S, Zhang P, et al. High temperature creep damage behavior of a novel Co-Cr-Mo-Ni alloy [J]. J. Iron Steel Res., 2019, 31: 683
侯智鹏, 张 姝, 张 鹏 等. 新型Cr-Co-Mo-Ni合金的高温蠕变损伤 [J]. 钢铁研究学报, 2019, 31: 683
6 Condat M, Decamps B. Shearing of γ' precipitates by single a/2<110> matrix dislocations in a γ/γ' Ni-based superalloy [J]. Scr. Metall., 1987, 21: 607
doi: 10.1016/0036-9748(87)90369-3
7 Décamps B, Morton A J, Condat M. On the mechanism of shear of γ' precipitates by single (a/2) <110> dissociated matrix dislocations in Ni-based superalloys [J]. Philos. Mag., 1991, 64A: 641
8 Décamps B, Raujol S, Coujou A, et al. On the shearing mechanism of γ' precipitates by a single (a/6)<112> Shockley partial in Ni-based superalloys [J]. Philos. Mag., 2004, 1A: 91
9 Knowles D M, Chen Q Z. Superlattice stacking fault formation and twinning during creep in γ/γ' single crystal superalloy CMSX-4 [J]. Mater. Sci. Eng., 2003, A340: 88
10 Chen Q Z, Knowles D M. Mechanism of <112> /3 slip initiation and anisotropy of γ' phase in CMSX-4 during creep at 750oC and 750 MPa [J]. Mater. Sci. Eng., 2003, A356: 352
11 Kolbe M. The high temperature decrease of the critical resolved shear stress in nickel-base superalloys [J]. Mater. Sci. Eng., 2001, A319-321: 383
12 Viswanathan G B, Sarosi P M, Whitis D H, et al. Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy René 88 DT [J]. Mater. Sci. Eng., 2005, A400-401: 489
13 Viswanathan G B, Karthikeyan S, Sarosi P M, et al. Microtwinning during intermediate temperature creep of polycrystalline Ni-based superalloys: Mechanisms and modelling [J]. Philos. Mag., 2006, 86A: 4823
14 Sarosi P M, Viswanathan G B, Mills M J. Direct observation of an extended complex stacking fault in the γ' phase of a Ni-base superalloy [J]. Scr. Mater., 2006, 55: 727
doi: 10.1016/j.scriptamat.2006.06.019
15 Unocic R R, Viswanathan G B, Sarosi P M, et al. Mechanisms of creep deformation in polycrystalline Ni-base disk superalloys [J]. Mater. Sci. Eng., 2008, A483-484: 25
16 Kovarik L, Unocic R R, Li J, et al. Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys [J]. Prog. Mater. Sci., 2009, 54: 839
doi: 10.1016/j.pmatsci.2009.03.010
17 Zou J W, Wang W X. Development and application of P/M superalloy [J]. J. Aeronaut. Mater., 2006, 26: 244
邹金文, 汪武祥. 粉末高温合金研究进展与应用 [J]. 航空材料学报, 2006, 26: 244
18 Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application [J]. Acta Metall. Sin., 2019, 55: 1133
张国庆, 张义文, 郑 亮 等. 航空发动机用粉末高温合金及制备技术研究进展 [J]. 金属学报, 2019, 55: 1133
19 Wang X Q, Luo X J, Zou J W. Effects of HIP temperature on microstructure of FGH96 superalloy [J]. J. Aeronaut. Mater., 2006, 26: 293
王旭青, 罗学军, 邹金文. 热等静压温度对FGH96粉末高温合金显微组织的影响 [J]. 航空材料学报, 2006, 26: 293
20 Peng Z C, Tian G F, Jiang J, et al. Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy [J]. Mater. Sci. Eng., 2016, A676: 441
21 Peng Z C, Zou J W, Wang X Q. Microstructural characterization of dislocation movement during creep in powder metallurgy FGH96 superalloy [J]. Mater. Today Commun., 2020, 25: 101361
22 Peng Z C, Zou J W, Yang J, et al. Influence of γ' precipitate on deformation and fracture during creep in PM nickel-based superalloy [J]. Prog. Nat. Sci., 2021, 31: 303
doi: 10.1016/j.pnsc.2020.12.008
23 Li M Z, Pham M S, Peng Z C, et al. Creep deformation mechanisms and CPFE modelling of a nickel-base superalloy [J]. Mater. Sci. Eng., 2018, A718: 147
24 Feng Y F, Zhou X M, Zou J W, et al. Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96 [J]. Int. J. Miner. Metall. Mater, 2019, 26: 493
25 Liu Q B, Lu C F, Yan P. Physicochemical phase analysis of a directionally solidified Ni-based cast superalloy [J]. Metall. Anal., 2006, 26(2): 9
刘庆斌, 卢翠芬, 燕 平. 一种定向凝固镍基铸造高温合金的物理化学相分析 [J]. 冶金分析, 2006, 26(2): 9
26 Kamaya M. Measurement of local plastic strain distribution of stainless steel by electron backscatter diffraction [J]. Mater. Charact., 2009, 60: 125
doi: 10.1016/j.matchar.2008.07.010
27 Kamaya M. A smoothing filter for misorientation mapping obtained by EBSD [J]. Mater. Trans., 2010, 51: 1516
doi: 10.2320/matertrans.MAW201005
28 Kamaya M. Assessment of local deformation using EBSD: Quantification of accuracy of measurement and definition of local gradient [J]. Ultramicroscopy, 2011, 111: 1189
doi: 10.1016/j.ultramic.2011.02.004
29 Kamaya M. Characterization of microstructural damage due to low-cycle fatigue by EBSD observation [J]. Mater. Charact., 2009, 60: 1454
doi: 10.1016/j.matchar.2009.07.003
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] Jun XIE, Jinjiang YU, Xiaofeng SUN, Tao JIN. HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃[J]. 金属学报, 2016, 52(3): 257-263.
[3] XU Ling, CHU Zhaokuang, CUI Chuanyong, GU Yuefeng, SUN Xiaofeng. CREEP MECHANISM OF A Ni-Co BASE WROUGHT SUPERALLOY[J]. 金属学报, 2013, 49(7): 863-870.
[4] CHEN Yunxiang YAN Wei HU Ping SHAN Yiyin YANG Ke. CDM MODELING OF CREEP BEHAVIOR OF T/P91 STEEL UNDER HIGH STRESSES  [J]. 金属学报, 2011, 47(11): 1372-1377.
No Suggested Reading articles found!