Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (3): 240-248     DOI:
Research Articles Current Issue | Archive | Adv Search |
Numerical simulation of dendrite microstructure for Al-Si alloy with additive phase
LI Bin; XU Qingyan; LIU Baicheng
Key Laboratory for Advanced Materials Processing Technology; Ministry of Education of China; Department of Mechanical Engineering; Tsinghua University; Beijing 100084
Cite this article: 

LI Bin; XU Qingyan; LIU Baicheng. Numerical simulation of dendrite microstructure for Al-Si alloy with additive phase. Acta Metall Sin, 2007, 43(3): 240-248 .

Download:  PDF(1123KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The interaction between spherical particles and dendrites and the process of microstructure formation including particle distribution for Al-7.0%Si (mass fraction) alloy with additive SiC particles were simulated. Based on heat and solute conservation, solute redistribution, interface curvature and anisotropy were considered. Particle, solid, liquid as well as solid/liquid interface were treated respectively. The numerical models that describe the interaction between single particle/multiple particles and dendrites were established. The engulfment/pushing phenomena between single particle and solidification interface were predicted, and solute concentration and velocity field distribution of the growing dendrites and solid/liquid interface shape close to particle were studied. The interaction process between multiple particles and dendrites and the segregation of particles into the interdendrite regions were recurred. The simulated results show that the interaction between particles and advancing curved solid/liquid interfaces is non-steady state when the particle is pushed, while it can be treated as steady pushing mode when solidification velocity is lower than critical velocity. The simulated results of dendrite microstructure and particle distribution are in good agreement with the experimental.
Key words:  particle pushing      dendritic growth      microstructure      
Received:  18 July 2006     
ZTFLH:  TG244  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I3/240

[1]Jung C K,Jung S W,Nam H W,Han K S.J Compos Mater,2003;37:503
[2]Li B,Xu Q Y,Li X D,Liu B C.Acta Metall Sin,2005; 41:1303 (李斌,许庆彦,李旭东,柳百成.金属学报.2005;12:1303)
[3]Li B,Xu Q Y,Li X D,Liu B C.ISIJ Int,2006;46:241
[4]Li B,Xu Q Y,Li X D,Liu B C.Acta Metall Sin,2006; 42:875 (李斌,许庆彦,李旭东,柳百成.金属学报,2006;42:875)
[5]Nastac L.Acta Mater,1999;47:4253
[6]Zhu M F,Hong C P.ISIJ Int,2001;41:436
[7]Zhu M F,Hong C P.Metall Mater Trans,2004;35A:1555
[8]Beltran-Sanchez L,Stefanescu D M.Metall Mater Trans, 2003;34A:367
[9]Li Q,Li D Z,Qian B N.Acta Metall Sin,2004;40:634 (李强,李殿中,钱百年.金属学报.2004;40:634)
[10]Kim J K,Rohatgi P K.Acta Mater,1998;46:1115
[11]Kim J K,Rohatgi P K.Metall Mater Trans,1998;29A: 351
[12]Stefanescu D M,Juretzko F R,Dhindaw B K,Catalina A V,Sen S,Curreri P A.Metall Mater Trans,1998;29A: 1697
[13]Catalina A V,Mukherjee S,Stefanescu D M.Metall Mater Trans,2000;31A:2559
[14]Dilthey U,Pavlik V.In:Thomas B G,Beckermann C,ed.,Proc 8th Int Conf on Modeling of Casting and Welding Processes,Warrendale,PA:TMS,1998:589
[15]Sasikumar R,Sreenivisan R.Acta Mater,1994;42:2381
[16]Stefanescu D M,Dhindaw B K,Kacar S A,Moitra A. Metall Mater Trans,1988;19A:2847
[17]Sekhar J A,Trivedi R.In:Rohatgi P K,ed.,Solidifica- tion of Metal Matrix Composites,Warrendale,PA:TMS, 1990:39
[18]Kim J K,Rohatgi P K.Metall Mater Trans,2000;31A: 1295
[19]Juretzko F R,Dhindaw B K,Stefanescu D M,Sen S,Cur- ??reri P A.Metall Mater Trans,1998;29A:1691
[20]Omenyi S N,Neumann A W.J Appl Phys,1976;47:3956
[21]Garvin J W,Udaykumar H S,J Cryst Growth,2003;252: 451
[22]Wu Y,Liu H,Lavernia E J.Acta Metall Mater,1994;42: 825
[23]Shangguan D,Ahuja S,Stefanescu D M.Metall Mater Troths,1992;23A:669
[24]Feng W M.Master Degree Thesis,Tsinghua University, Beijing,2002:66 (冯伟明.清华大学硕士学位论文,北京,2002:66)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!