Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (7): 733-738     DOI:
Research Articles Current Issue | Archive | Adv Search |
Precipitation Behavior Of Cast ZC62 Magnesium Alloy
LI Xiao; LIU Jiangwen; LUO Chengping
College of Mechanical Engineering; South China University of Technology; Guangzhou 510640
Cite this article: 

LI Xiao; LIU Jiangwen; LUO Chengping. Precipitation Behavior Of Cast ZC62 Magnesium Alloy. Acta Metall Sin, 2006, 42(7): 733-738 .

Download:  PDF(985KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Microstructural studies had been carried out in the ZC62 magnesium alloys with the as-cast and solution-ageing treated states by means of optical microscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The microstructure of the as-cast ZC62 magnesium alloys was composed of the Mg matrix and eutectic (Mg+CuMgZn), after solution treatment at 440℃, most nonequilibrium eutectic at the grain boundaries dissolved. The granular CuMgZn phase and a small amount of needle-like Mg(Zn,Cu)2 precipitated within the Mg matrix after ageing treatment at 200℃ for different hours, and the Mg(Zn,Cu)2 phase disappeared with the ageing hour increasing, and transformed into the CuMgZn phase. The formation mechanisum of alloy precipitated phases and their effects on ageing strengthening were also discussed.
Key words:  ZC62      magnesium alloys      microstructure      CuMgZn      
Received:  28 September 2005     
ZTFLH:  TG146  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I7/733

1] Yu J Q, Yi W Z, Chen B D, Chen H J. Handbook of Binary Alloy Phase Diagrams.Shanghai:Shanghai Technology Press, 1987: 455 (虞觉奇,易文质,陈邦迪,陈宏鉴.二元合金状态图集.上海: 上海科学技术出版社, 1987:455)
[2] Clark J B, Zabdyr L,Moser Z. In:ASM Handbook, Vol.3, Alloy Phase Diagrams. Materials Park,Ohio:ASM International,1992: 285
[3] Unsworth W. Light Met Age, 1987; 45: 10
[4] Lorimer G W. Proc of Magnesium Technology, London: Whitstable, 1987: 47
[5] Moss R I. PhD Thesis, University of Manchester, 1983
[6] Avedesian M M,Baker H.ASM Specialty Handbook-Magnesium and Magnesium Alloys, Materials Park,Ohio: ASM International, 1999: 19
[7] Jun J H, Kim J M, Park B K, Kim K T, Jung W J. J Mater Sci, 2005; 40: 2659
[8] Clark J B. Acta Metall, 1965; 13: 1281
[9] Luo Z P, Zhang S Q. Acta Metall Sin, 1993; 29: A176 (罗治平,张少卿.金属学报,1993;29:A176)
[10] Luo C P, Liu J W, Liu H W. Mater Sci Forum, 2005; 488-489: 205
[11] Ma Y L, Zuo R L, Tang A T. J Chongqing Univ (Nat Sci), 2004; 27: 91 (麻彦龙,左汝林,汤爱涛.重庆大学学报(自然科学版),2004; 27:91)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!