Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (3): 287-290     DOI:
Research Articles Current Issue | Archive | Adv Search |
Characterization of a low carbon low alloy steel by nanoindentation
SONG Hongwei; SHI Bi; WANG Xiufang; ZHANG Junbao
Baosteel Technology Center; Baoshan Iron & Steel Co.; Ltd.; Shanghai 201900
Cite this article: 

SONG Hongwei; SHI Bi; WANG Xiufang; ZHANG Junbao. Characterization of a low carbon low alloy steel by nanoindentation. Acta Metall Sin, 2005, 41(3): 287-290 .

Download:  PDF(262KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A low carbon low alloy steel with two different types of microstructures was characterized by nanoindentation. The results indicate that the average nanoindentation hardness of martensite is at least 70\% higher than that of ferrite in the dual-phase sample. Since the ultrafine martensite grain is embedded in the soft ferrite matrix, the nanoindentation hardness of martensite exhibits a substrate-effect when the indentation depth is over 40 nm. Due to more carbon atoms partitioning to austenite during intercritical process, carbon content of martensite in the dual-phase sample may be several times higher than the nominal carbon content of the steel, which makes the average nanoindentation hardness of martensite in the dual-phase sample is at least 30% higher than that in the fully martensitic sample. In addition, the possible effects of carbon partitioning on Poisson ratio and Young's modulus of martensite were discused briefly.
Key words:  steel      ferrite      martensite      nanoindentation      hardness      
Received:  06 April 2004     
ZTFLH:  TG113.25  
  TG142.33  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I3/287

[1] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 1564
[2] Oliver W C, Pharr G M. J Mater Res, 2004; 19: 3
[3] Jacq C, Lormand G, Nelias D, Girodin D, Vincent A. Mater Sci Eng, 2003; A342: 311
[4] Ohmura T, Hara T, Tsuzaki K. Scr Mater, 2003; 49: 1157
[5] Randall N X, Julia-Schmutz C, Soro J M, Zacharie G. Thin Solid Films, 1997; 308-309: 297
[6] Choi Y, Choo W Y, Kwon D. Scr Mater, 2001; 45: 1401
[7] Furnemont Q, Kempf M, Jacques P J, Goken M, Delannay F. Mater Sci Eng, 2002; A328: 26
[8] Makinson J D, Weins W N, Xu Y, de Angelis R J, Ferber M K, Riester L, Lawrence R V. In: Inove K, ed., Proc 1996 Int Conf on Displacive Phase Transformations and Their Applications in Materials Engineering, Urban, Ill, USA: TMS, 1998: 391m
[1] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[3] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[4] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[5] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[6] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[7] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[8] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[9] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[10] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[11] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[15] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
No Suggested Reading articles found!