|
|
TENSION FRACTURE BEHAVIOR OF Zr41.25Ti13.75Ni10Cu12.5Be22.5 BULK METALLIC GLASS |
WANG Gang;SHEN Jun;SUN Jianfei;Z.H. Stachurski;ZHOU Bide |
School of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001; Department of Engineering; Australian National University; Canberra ACT0200; Australia |
|
Cite this article:
WANG Gang; SHEN Jun; SUN Jianfei; Z.H. Stachurski; ZHOU Bide. TENSION FRACTURE BEHAVIOR OF Zr41.25Ti13.75Ni10Cu12.5Be22.5 BULK METALLIC GLASS. Acta Metall Sin, 2005, 41(3): 291-296 .
|
Abstract The tension fracture behavior of
Zr41.25Ti13.75Ni10Cu12.5Be22.5bulk metallic glass is associated with the
test temperature and strain rate. At room
temperature, the brittle fracture is dominated by the shear band's
formation and expansion. A large amount of radiating vein-like
morphologies and the liquid droplets can be
observed on the fracture surface. The calculation
found that the adiabatic heating makes the temperature of the
fracture surface layer higher than the liquidus temperature.
At the glass transition temperature, the fracture mode is
still brittle fracture. Dimples, vein-like morphologies and
liquid droplets occupy the fracture surface. The
adiabatic heating induces the temperature of fracture
surface layer to be higher than the liquidus temperature too.
With the temperature increasing or the strain rate decreasing,
the necking fracture appears. The fracture surface
displays the vein-like morphologies without the liquid
droplets. The affection of the adiabatic heating is so weak
that the temperature of the fracture surface layer can not
increase obviously.
|
Received: 23 April 2004
|
|
[1] Inoue A. Acta Mater, 2000; 48: 279 [2] Johnson W L. MRS Bull, 1999; 24(10): 42 [3] Saotome Y, Itoh K, Zhang T, Inoue A. Scr Mater, 2001; 44: 1541 [4] Kawamura Y, Nakamura T, Kato H, Mano H, Inoue A. Mater Sci Eng, 2001; A304-306: 674 [5] Zhang Q S, Guo D Y, Wang A M, Zhang H F, Ding B Z, Hu Z Q. Intermetallics, 2002; 10: 1197 [6] Wang W H, Wei Q, Friedrich S. J Mater Sci, 2000; 35: 2291 [7] Jiang S W, Qi M. Res Met Mater, 2003; 29(1): 44 (姜淑文,齐民.金属材料研究, 2003;29(1):44) [8] Bian Z, Chen G L, He G, Hui X D. Mater Sci Eng, 2001; A316: 135 [9] Liu L, Wu Z F, Zhang J. J Alloys Compd, 2002; 339: 90 [10] Zhang Y, Ji Y F, Zhao D Q, Wang R J, Pan M X, Dong Y D, Wang W H. Scr Mater, 2001; 44: 1107 [11] Huang R, Suo Z, Prevost J H, Nix W D. J Mech Phys Solids, 2002; 50: 1011 [12] Zhang Z F, Eckert J, Schultz L. Acta Mater, 2003; 51: 1167 [13] Wright W J, Schwarz R B, Nix W D. Mater Sci Eng, 2001; A319-321: 229 [14] Liu C T, Heatherly L, Easton D S, Carmichael C A, Schneibel J H, Chen C H, Wright J L, Yoo M H, Hor- ton J A, Inoue A. Metall Mater Trans, 1998; 29A: 1811 [15] Jing Q, Liu R P, Shao G J, Wang W K. Mater Sci Eng, 2003; A359: 402 [16] Kawamura Y, Shibata T, Inoue A, Masumoto T. Scr Mater, 1997; 37: 431 [17] Kawamura Y, Nakamura T, Kato H, Mano H, Inoue A. Mater Sci Eng, 2001; A304-306: 674 [18] Kawamura Y, Nakamura T, Inoue A. Scr Mater, 1998; 39: 301 [19] Nieh T G, Wadsworth J, Liu C T, Ohkubo T, Hirotsu Y. Acta Mater, 2001; 49: 2887 [20] Nieh T G, Mukai T, Liu C T. Scr Mater, 1999; 40: 1021 [21] Reger-Leonhard A, Heilmaier M, Eckert J. Scr Mater, 2000; 43: 459 [22] Johnson W L, Lu J, Demetriou M D. Intermetallics, 2002; 10: 1039 [23] Lu J., Ravichandran G, Johnson W L. Acta Mater, 2003; 51: 3429 [24] Shen J, Wang G, Sun J F, Chen D M, Xing D W, Zhou B D. Acta Metall Sin, 2004; 40: 518 (沈军,王刚.孙剑飞,陈德民,邢大伟,周彼德.金属学 报,2004;40:518) [25] Spaepen F. Acta Metall, 1977; 25: 407 [26] Busch R, Kim Y J, Johnson W L. J Appl Phys, 1995; 77: 4039 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|