Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (3): 291-296     DOI:
Research Articles Current Issue | Archive | Adv Search |
TENSION FRACTURE BEHAVIOR OF Zr41.25Ti13.75Ni10Cu12.5Be22.5 BULK METALLIC GLASS
WANG Gang;SHEN Jun;SUN Jianfei;Z.H. Stachurski;ZHOU Bide
School of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001; Department of Engineering; Australian National University; Canberra ACT0200; Australia
Cite this article: 

WANG Gang; SHEN Jun; SUN Jianfei; Z.H. Stachurski; ZHOU Bide. TENSION FRACTURE BEHAVIOR OF Zr41.25Ti13.75Ni10Cu12.5Be22.5 BULK METALLIC GLASS. Acta Metall Sin, 2005, 41(3): 291-296 .

Download:  PDF(410KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The tension fracture behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5bulk metallic glass is associated with the test temperature and strain rate. At room temperature, the brittle fracture is dominated by the shear band's formation and expansion. A large amount of radiating vein-like morphologies and the liquid droplets can be observed on the fracture surface. The calculation found that the adiabatic heating makes the temperature of the fracture surface layer higher than the liquidus temperature. At the glass transition temperature, the fracture mode is still brittle fracture. Dimples, vein-like morphologies and liquid droplets occupy the fracture surface. The adiabatic heating induces the temperature of fracture surface layer to be higher than the liquidus temperature too. With the temperature increasing or the strain rate decreasing, the necking fracture appears. The fracture surface displays the vein-like morphologies without the liquid droplets. The affection of the adiabatic heating is so weak that the temperature of the fracture surface layer can not increase obviously.
Key words:  Zr-based bulk metallic glass      tension deformation      fracture behavior      
Received:  23 April 2004     
ZTFLH:  TG139.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I3/291

[1] Inoue A. Acta Mater, 2000; 48: 279
[2] Johnson W L. MRS Bull, 1999; 24(10): 42
[3] Saotome Y, Itoh K, Zhang T, Inoue A. Scr Mater, 2001; 44: 1541
[4] Kawamura Y, Nakamura T, Kato H, Mano H, Inoue A. Mater Sci Eng, 2001; A304-306: 674
[5] Zhang Q S, Guo D Y, Wang A M, Zhang H F, Ding B Z, Hu Z Q. Intermetallics, 2002; 10: 1197
[6] Wang W H, Wei Q, Friedrich S. J Mater Sci, 2000; 35: 2291
[7] Jiang S W, Qi M. Res Met Mater, 2003; 29(1): 44 (姜淑文,齐民.金属材料研究, 2003;29(1):44)
[8] Bian Z, Chen G L, He G, Hui X D. Mater Sci Eng, 2001; A316: 135
[9] Liu L, Wu Z F, Zhang J. J Alloys Compd, 2002; 339: 90
[10] Zhang Y, Ji Y F, Zhao D Q, Wang R J, Pan M X, Dong Y D, Wang W H. Scr Mater, 2001; 44: 1107
[11] Huang R, Suo Z, Prevost J H, Nix W D. J Mech Phys Solids, 2002; 50: 1011
[12] Zhang Z F, Eckert J, Schultz L. Acta Mater, 2003; 51: 1167
[13] Wright W J, Schwarz R B, Nix W D. Mater Sci Eng, 2001; A319-321: 229
[14] Liu C T, Heatherly L, Easton D S, Carmichael C A, Schneibel J H, Chen C H, Wright J L, Yoo M H, Hor- ton J A, Inoue A. Metall Mater Trans, 1998; 29A: 1811
[15] Jing Q, Liu R P, Shao G J, Wang W K. Mater Sci Eng, 2003; A359: 402
[16] Kawamura Y, Shibata T, Inoue A, Masumoto T. Scr Mater, 1997; 37: 431
[17] Kawamura Y, Nakamura T, Kato H, Mano H, Inoue A. Mater Sci Eng, 2001; A304-306: 674
[18] Kawamura Y, Nakamura T, Inoue A. Scr Mater, 1998; 39: 301
[19] Nieh T G, Wadsworth J, Liu C T, Ohkubo T, Hirotsu Y. Acta Mater, 2001; 49: 2887
[20] Nieh T G, Mukai T, Liu C T. Scr Mater, 1999; 40: 1021
[21] Reger-Leonhard A, Heilmaier M, Eckert J. Scr Mater, 2000; 43: 459
[22] Johnson W L, Lu J, Demetriou M D. Intermetallics, 2002; 10: 1039
[23] Lu J., Ravichandran G, Johnson W L. Acta Mater, 2003; 51: 3429
[24] Shen J, Wang G, Sun J F, Chen D M, Xing D W, Zhou B D. Acta Metall Sin, 2004; 40: 518 (沈军,王刚.孙剑飞,陈德民,邢大伟,周彼德.金属学 报,2004;40:518)
[25] Spaepen F. Acta Metall, 1977; 25: 407
[26] Busch R, Kim Y J, Johnson W L. J Appl Phys, 1995; 77: 4039
[1] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[2] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[3] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[4] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[5] Xiangli FENG,Lei WANG,Yang LIU. STUDY ON MICROSTRUCTURE AND DYNAMIC FRACTURE BEHAVIOR OF Q460 STEEL WELDING JOINTS[J]. 金属学报, 2016, 52(7): 787-796.
[6] ZHANG Jinyu, LIU Gang, SUN Jun. SIZE EFFECTS ON DEFORMATION AND FRACTURE BEHAVIOR OF NANOSTRUCTURED METALLIC MULTILAYERS[J]. 金属学报, 2014, 50(2): 169-182.
[7] LI Shilei WANG Xitao WANG Yanli LI Shuxiao. EFFECTS OF THERMAL AGING ON MICRO–MECHANICAL PROPERTIES AND IMPACT FRACTURE BEHAVIOR OF Z3CN20–09M STAINLESS STEELS[J]. 金属学报, 2011, 47(6): 751-756.
[8] HUANG Caiyun CHEN Qi LIU Lin. FRICTION AND WEAR PROPERTIES OF Ni–FREE Zr–BASED BULK METALLIC GLASSES IN SIMULATED BODY FLUID[J]. 金属学报, 2010, 46(6): 681-686.
[9] CHEN Demin; WANG Gang; SUN Jianfei; SHEN Jun. DEFORMATION BEHAVIOR OF TUNGSTEN WIRES ENHANCED Zr-BASED BULK METALLIC GLASS COMPOSITE AT HIGH STRAIN RATE[J]. 金属学报, 2006, 42(9): 1003-1008 .
[10] HUI Weijun; DONG Han; WENG Yuqing; SHI Jie; NIE Yihong; CHU Zuoming; CHEN Yunbo. Delayed Fracture Behavior Of Ultrafine Grained High Strength Steel[J]. 金属学报, 2004, 40(6): 561-.
[11] SHEN Jun; WANG Gang; SUN Jianfei; CHEN Demin; XING Dawei; ZHOU Bide. Superplastic Flow Behavior of Zr Base Bulk Metallic Glass in Supercooled Liquid Region[J]. 金属学报, 2004, 40(5): 518-522 .
No Suggested Reading articles found!