Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (1): 1-8     DOI:
Research Articles Current Issue | Archive | Adv Search |
Progress in Fatigue of Small Dimensional Materials
ZHANG Guangping; WANG Zhongguang
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese
Cite this article: 

ZHANG Guangping; WANG Zhongguang. Progress in Fatigue of Small Dimensional Materials. Acta Metall Sin, 2005, 41(1): 1-8 .

Download:  PDF(559KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Small dimensional materials are widely used in micro/nano--systems, such as large scale integrated circuits and microelectromechanical systems (MEMS). Since the geometric and microstructural dimensions of the materials are ranged from microns to nanometers, the constraints of the dimensions on dislocation activities and the effects of surfaces and interfaces in the small dimensional materials result in fatigue behaviors different from that of the bulk materials. In this paper, fatigue testing methods, cyclic deformation, crack initiation and propagation behaviors of the small dimensional materials studied in recent years, such as thin films, are reviewed. The corresponding fatigue size effects and damage mechanisms are discussed. The prospective research directions of fatigue of small dimensional materials in the future are forecasted.
Key words:  Small dimensional materials      Thin films      Fatigue damage      Size effect      
Received:  20 July 2004     
ZTFLH:  TG111.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I1/1

[1] Menz W, Mohr J, Paul O. Microsystem Technology. Wein-heim: WILEY-VCH, 2001: 1
[2] Spearing S M. Acta Mater, 2000; 48: 179
[3] Ohring M. Reliability and Failure of Electronic Materialsand Devices. Academic Press, 1998: 4
[4] Nix W D. Metall Trans, 1989; 20A: 2217
[5] Arzt E. Acta Mater, 1998; 46: 5611
[6] Keller R M, Baker S P, Arzt E. J Mater Res, 1998; 13:1307
[7] Hommel M, Kraft O. Acta Mater, 2001; 49: 3935
[8]Suresh S,Translated by Wang Z G.Fatigue of Materials. Beijing:National Defense Industry Press,1999:37 (Suresh S著,王中光译.材料的疲劳(第二版).北京:国防 工业出版社,1999:37)
[9] Grosskreutz J C, Mughrabi H. In: Argon A S ed, Constitutive Equations in Plasticity Cambridge, MA: The MIT Press, 1975: 251
[10] Sharpe Jr W N, Yuan B, Edwards R L. J Microelec-tromechan Syst, 1997; 6: 193
[11] Tsuchiya T, Tabata O, Sakata J, Taga Y. In: Proceedings of IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems. 1997: 529
[12] Kapels H, Aigner R, Binder J. IEEE Trans Electron Devices, 2000; 47: 1522
[13] Judelewicz M. Scr Metall Mater, 1993; 29: 1463
[14] Hommel M, Kraft O, Arzt E. J Mater Res, 1999; 14: 2373
[15] Brown S B, van Arsdell W, Muhlstein C L. In: Transducers-97: Int Conf on Solid State Sensors and Actuators, Chicage, Illinois: Digest of Technical Papers, 1997: 591
[16] Kahn H, Ballarini R, Mullen R L, Heuer A H. Proc RoyalSoc London, 1999; 455: 3807
[17] Schwaiger R, Kraft O. Scr Mater, 1999; 41: 823
[18] Takashima K, Maekawa S, Shimojo M, Higo Y, SugiuraS, Pfister B, Swain M V. In: Wu X R, Wang Z G eds,Proceedings of the 7th International Fatigue Congress,Cradley Heath, UK: High Education Press, 1999; 3: 1871
[19] Zhang G P, Takashima K, Shimojo M, Higo Y. Mater Lett,2003; 57(1): 1555
[20] Connally J A, Brown S B. Exp Mechan, 1992; 32: 81
[21] Muhlstein C L, Stach E A, Ritchie R O. Appl Phy Lett,2002; 80: 1532
[22] Muhlstein C L, Brown H B, Ritchie R O. Sens Actuators,2001; 94: 177
[23] Allameh S M, Gaily B, Brown S, Soboyejo W O. ASTMSTP 1413, West Conshohocken, 2000
[24] Hofbeck R, Hausmann K, Ilschner B, Kuenzi H U. ScrMetall, 1986; 20: 1601
[25] Judelewicz M, Kunzi H U, Merk N, Ilschner B. Mater SciEng, 1994; A186: 135
[26] Hong S, Weil R. Thin Solid Films, 1996; 283: 175
[27] Read D T. Int J Fatigue, 1998; 20: 203
[28] Merchant H D, Minor M G, Liu Y L. J Electron Mater,1999; 28: 998
[29] Hadrboletz A, Kathibi G, Weiss B, Stickler R. In: Wu XR, Wang Z G eds, Proceedings of the 7th InternationalFatigue Congress, Cradley Heath, UK: High EducationPress, 1999: 1865
[30] Schwaiger R, Dehm G, Kraft O. Philos Mag, 2003; 83: 693
[31] Kraft O, Schwaiger R, Wellner P. Mater Sci Eng, 2001; A319-321: 919
[32] Kraft O, Wellner P, Hommel M, Schwaiger R, Arzt E. ZMetallkd, 2002; 93(5): 392
[33] Schwaiger R, Kraft O. Acta Mater, 2003; 51(1): 195
[34] Zhang G P, Schwaiger R, Volkert C A, Kraft O. PhilosMag Lett, 2003; 83: 477
[35] Maekawa S, Takashima K, Shimojo M, Higo Y. Jpn J ApplPhys, 1999; 38: 7194
[36] Takashima K, Higo Y, Sugiura S, Shimojo M. MaterTrans, 2001; 42: 68
[37] Zhang G P, Volkert C A, Schwaiger R, Arzt E, Kraft O.Accepted by J Mater Res, 2005; 20(1): 201
[38] Zhang G P, Takashima K, Higo Y. Acta Metall Sin , inpress(张广平,高岛和希,肥後失吉.金属学报,待发表)
[39] Mughrabi M, Wang R, Differt K, Essmann U. ASTM STP811, 1983: 5
[40] Zhang G P, Volkert C A, Schwaiger R, Wellner P, Arzt E,Kraft O. to be published
[41] Freund L B. J Appl Mech, 1987; 54: 553
[42] Thiele E, Holste C, Klemm R. Z Metallkd, 2002; 93: 730
[43] Tang M J, Xu J S, Cai W, Bulatov V. Mater Res SocSymp Proc, 2003; 795: U2.4.1
[44] Gao H, Huang Y, Nix W D, Hutchinson J W. J Mech PhysSolids, 2000; 48: 99.
[45] Hwang K C, Jiang H, Huang Y, Gao H, Hu N. J MechPhys Solids, 2002; 50: 81.
[46] Chen S H, Wang Z Q. Adv Mech, 2003; 33: 407(陈少华,王自强.力学进展, 2003;33:407)
[47] Stoken J S, Evans A G. Acta Mater, 1998; 46: 5109
[48] Liu Y, Ngan A H W. Scr Mater, 2001; 44: 237
[49] Ashby M F. Philos Mag, 1970; 21: 399
[50] Zhang G P, Moenig R, Park Y B, Arzt E, Volkert C A. tobe published, 2005
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[3] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[4] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[5] Guangping ZHANG, Honglei CHEN, Xuemei LUO, Bin ZHANG. Progress in Thermal Fatigue of Micro/Nano-ScaleMetal Conductors[J]. 金属学报, 2018, 54(3): 357-366.
[6] Zhefeng ZHANG, Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG. Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials[J]. 金属学报, 2018, 54(11): 1693-1704.
[7] Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens[J]. 金属学报, 2018, 54(10): 1359-1367.
[8] Rui YANG,Yan PAN,Wei CHEN,Qiaoyan SUN,Lin XIAO,Jun SUN. DEFORMATION BEHAVIOR AND THE MECHANISM OF MICRO-SCALE Ti-10V-2Fe-3Al PILLARSIN COMPRESSION[J]. 金属学报, 2016, 52(2): 135-142.
[9] Jun SUN, Jinyu ZHANG, Kai WU, Gang LIU. SIZE EFFECTS ON THE DEFORMATION AND DAMAGEOF Cu-BASED METALLIC NANOLAYEREDMICRO-PILLARS[J]. 金属学报, 2016, 52(10): 1249-1258.
[10] HUANG Xiaoxu. SIZE EFFECTS ON THE STRENGTH OF METALS[J]. 金属学报, 2014, 50(2): 137-140.
[11] ZHANG Jinyu, LIU Gang, SUN Jun. SIZE EFFECTS ON DEFORMATION AND FRACTURE BEHAVIOR OF NANOSTRUCTURED METALLIC MULTILAYERS[J]. 金属学报, 2014, 50(2): 169-182.
[12] DENG Liping, YANG Xiaofang, HAN Ke, SUN Zeyuan, LIU Qing. STUDY ON THE MICROSTRUCTURE EVOLUTION OF Cu-Nb COMPOSITE WIRES DURING DEFORMATION AND ANNEALING[J]. 金属学报, 2014, 50(2): 231-237.
[13] ZHANG Jinyu ZHANG Xin NIU Jiajia LIU Gang ZHANG Guojun SUN Jun. LENGTH SCALE DEPENDENT MECHANICAL/ELECTRICAL PROPERTIES OF Cu/X (X=Cr, Nb) NANOSTRUCTURED METALLIC MULTILAYERS[J]. 金属学报, 2011, 47(10): 1348-1354.
[14] YIN Limeng YANG Yan LIU Liangqi ZHANG Xinping. SIZE EFFECT OF MECHANICAL BEHAVIOR OF MINIATURE SOLDER JOINT INTERCONNECTIONS IN ELECTRONIC PACKAGING[J]. 金属学报, 2009, 45(4): 422-427.
[15] ZHANG Jiwang LU Liantao SHEN Xunliang YI Hongfei ZHANG Weihua. EVALUATION METHOD OF FATIGUE DAMAGE UNDER VARIABLE AMPLITUDE STRESS BASED ON PLASTIC STRAIN[J]. 金属学报, 2009, 45(12): 1461-1465.
No Suggested Reading articles found!