Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (6): 589-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Molecular Dynamics Simulation of the Surface Energies of High—Index Surfaces in Metals
WANG Xiaochun; JIA Yu; YAO Qiankai;WANG Fei; MA Jianxin; HU Xing
School of Physical Engineering and Key Laboratory of Physical Materials;Zhengzhou University; Zhengzhou 450052
Cite this article: 

WANG Xiaochun; JIA Yu; YAO Qiankai; WANG Fei; MA Jianxin; HU Xing. Molecular Dynamics Simulation of the Surface Energies of High—Index Surfaces in Metals. Acta Metall Sin, 2004, 40(6): 589-.

Download:  PDF(8159KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Interatomic potentials of the embedded atom (EAM) type and molecular dynamics simulation are used to calculate the surface energies of the high--index surfaces containing the [001] or [-110] zone axis in Al, Cu and Ni. Two empirical formulas are developed based on structural unit model for high--index surfaces. The calculation result shows these formulas can be used to give an estimation of the energies of the high--index surfaces. The closest packed surfaces have the lowest surface energy and the surface energies of the closest surface (111) surface and the next closest surfaces (110) and (100) surfaces are the extremum on the curve of surface energy versus orientation angle. Both the theoretical simulation results and the empirical formula calculation results consist with the available experiment data.
Key words:  high--index surface      surface energy      molecular dynamics      
Received:  05 June 2003     
ZTFLH:  TG111  
  O647.1  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I6/589

[1] Yi S P, Liu R S. Acta Metall Sin, 2000; 36: 1030(易双萍, 刘让苏.金属学报; 2000; 36: 1030)
[2] Liang H Y, Ni X G. Acta Metall Sin, 2001; 37: 833(梁海弋, 倪向贵. 金属学报, 2001; 37: 833)
[3] Li J Z, Liu H. Acta Metall Sin, 2001; 37: 1013(李忠吉, 刘辉. 金属学报,2001;37: 1013)
[4] Zhuang J, Liu L. Acta Phys Sin, 1997; 46: 2418(庄军, 刘磊. 物理学报, 1997; 46: 2418)
[5] Daw M, Baskes M. Phys Rev B, 1984; 29: 6443
[6] Foiles S, Baskes M, Daw M. Phys Rev B, 1986; 33: 7983
[7] Barral M A, Llois A M. Phys Rev B, 2000; 62: 12668
[8] Nakanishi S, Umezawa K. Phys Rev B, 2000; 62: 13136
[9] Kumikov V K, Khokonov Kh B. J Appl Phys, 1983; 54:1346
[10] Zhuang J, Liu L. Phy Rev B, 1999; 59: 13278
[11] Udler D, Seidman D N. Phys Rev B, 1996; 54: 11133
[12] Vitos L, Ruban A V, Skriver H L. Philos Mag B, 1998;78: 487
[13] Katagiri M, Nozue Y. Mater Sci Eng A, 1996; 217/218:112
[14] Alden M, Mirbt S. Phys Rev B, 1992; 46: 6303
[15] Rokuta E, Hasegasa Y. Surf Sci, 1999; 427-428: 97
[16] Daniel J Gaspar, Aubrey T. J Chem Phys, 1998; 109: 6947
[17] Tian Y, Lin K W, Jona F. Phys Rev B, 2000; 62: 12844
[18] Reinecke N, Reiter S, Vetter S. Appl Phys A, 2002; 75: 1
[19] Roth M, Pickel M, Wang J. Appl Phys B, 2002; 74: 661
[20] Wolf D. Surf Sci, 1990; 226: 389
[21] Mutasa B, Farkas D. Surf Sci, 1998; 415: 312
[22] Voter A, Chen S. Mater Res Soc Symp Proc, 1987; Vol.82: 175
[23] Farkas D, Mutasa B, Vailhe C. Model Simul Mater Sci Eng, 1995; 3: 201
[24] Vitos L, Ruban A V, Skriver H L, Kollar J. Surf Sci, 1998;411: 186
[25] Todd J R, Andrew E D. Phys Rev B, 1989; 39: 9967
[26] Sinnoott S B, Stave M S, Raeker T J. Phys Rev B, 1991;44: 8927
[27] Kallinteris G C, Papanicolaou N I, Evangelakis G A. Phys Rev B, 1997; 55: 2150
[28] Mishin Y, Farkas D. Phys Rev B, 1999; 59: 3393
[29] Rodriguez A M, Bozzolo G, Ferrante J. Surf Sci, 1993;289: 100
[30] Chen S P, Voter A F. Surf Sci Lett, 1991; 244: L107
[1] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[2] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[3] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[4] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[5] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[6] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[7] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[8] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[9] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[10] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[11] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
[12] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[13] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[14] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[15] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
No Suggested Reading articles found!