Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (8): 1034-1040    DOI: 10.11900/0412.1961.2019.00041
Current Issue | Archive | Adv Search |
Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment
Junqin SHI1,Kun SUN2,Liang FANG2,Shaofeng XU3()
1. Xi’an Rare Metal Materials Institute Co. , Ltd. , Xi’an 710016, China
2. State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
3. Ningbo Institute of Technology, Zhejiang University, Ningbo 315000, China
Download:  HTML  PDF(8286KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The stress relaxation and elastic recovery have an important effect on the mechanical and electrical properties of metallic crystal materials, which restricts the range of application and working life of materials. However, during plastic deformation of materials, the relaxation and elastic recovery behaviors are still not very clear at the nanoscale. In this work, the stress relaxation and elastic recovery of monocrystalline Cu under water environment is studied by molecular dynamics simulation. The results indicate the stress acting on Cu surface decreases at constant strain, meaning the occurrence of stress relaxation phenomenon. The stress relaxation increases with water film thickening compared with no-water environment. The separation between Cu atoms dramatically decreases with the increasing indentation depth at indenting stage, and there is no clear change in the nearest interatomic separation at stress relaxation stage, but the separation increases rapidly due to the release of elastic energy and dislocation energy at the unloading stage. The nucleated dislocations within Cu coated by water film are obviously more than that without water, which suggests the water film increases the unrecovered deformation in the total nanoindentation process. During unloading, partial dislocations disappear because of the deformation energy release, while the water film impedes the elastic recovery and plastic release.

Key words:  stress relaxation      elastic recovery      monocrystalline Cu      molecular dynamics     
Received:  20 February 2019     
ZTFLH:  TG14  
Fund: Young Scientists Fund of National Natural Science Foundation of China((No.51605432));Young Scientists Fund of the Natural Science Foundation of Zhejiang Province, China((No.LQ16E050007));Natural Science Foundation of Ningbo, China((No.2015A610097))
Corresponding Authors:  Shaofeng XU     E-mail:  10925066@zju.edu.cn

Cite this article: 

Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment. Acta Metall Sin, 2019, 55(8): 1034-1040.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00041     OR     https://www.ams.org.cn/EN/Y2019/V55/I8/1034

Fig.1  The initial model of nanoindentation of monocrystalline copper under water environmentColor online

Atom pair

ε

kJ·mol-1

δ

nm

Cutoff distance
nm
O—O0.6505[32]0.31655[30]0.6
Cu—O1.1335[30,31]0.28877[30,31]0.5
C—O0.4186[32]0.32750[32]0.5
Table 1  Parameters for TIP4P and Lennard-Jones potential[30,31,32]
Fig.2  Schematic of displacement-controlled nano-indentation
Fig.3  Load-indentation depth curves of without (a), and with H=1.0 nm (b), 2.0 nm (c) and 3.0 nm (d) water films (H—water film thickness)
Fig.4  The nearest interatomic separation among Cu atoms in indenting region under different water environments
Fig.5  The slice configurations of monocrystalline copper before (orange) and after (blue) unloading of without (a), and with H=1.0 nm (b), 2.0 nm (c) and 3.0 nm (d) water filmsColor online
Fig.6  Default configurations within monocrystalline copper after loading (left), after stress relaxation (middle), and after unloading (right) of without (a), and with H=1.0 nm (b), 2.0 nm (c) and 3.0 nm (d) water films (blue—undeformed atom, red—surface and partial dislocation atom, green—stacking fault atom)Color online
[1] Jin Y, Wei N. Research on stress relaxation of metals at elevated temperature [J]. J. Mechan. Strength, 1997, 19(3): 57
[1] (金 尧, 魏 楠. 金属高温应力松弛行为研究 [J]. 机械强度, 1997, 19(3): 57)
[2] Guiu F, Pratt P L. Stress relaxation and the plastic deformation of solids [J]. Phys. Status Solidi., 1964, 6B: 111
[3] Zhan L H, Wang M, Huang M H. Prediction model for aging stress-relaxation behavior based on creep equations [J]. J. Mechan. Eng., 2013, 49(10): 70
[3] (湛利华, 王 萌, 黄明辉. 基于蠕变公式的时效应力松弛行为预测模型 [J]. 机械工程学报, 2013, 49(10): 70)
[4] Gooch J W. Elastic Recovery [M]. New York: Springer, 2011: 213
[5] Peng Z J, Wen T, Gong J H, et al. Relationship between the ratio of Young's modulus to hardness and the elastic recovery of nanoindentation [J]. Key Eng. Mater., 2012, 492: 5
[6] Li Z H, Li Y F, Zhang C L, et al. Creep and stress relaxation in free-standing thin metal films controlled by coupled surface and grain boundary diffusion [J]. Acta Mater., 2012, 60: 3057
[7] Gurewitz G, Atzmon N, Rosen A. Creep and stress relaxation in 18% Ni (250) maraging steel [J]. Met. Sci. J., 1977, 4: 62
[8] Torres M A S, Voorwald H J C. An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel [J]. Int. J. Fatigue, 2002, 24: 877
[9] Gedeon M. Factors affecting stress relaxation and creep [J]. Technical TDBITS, 2010, 13: 1
[10] Blonski S, Brostow W, Kubát J. Molecular-dynamics simulations of stress relaxation in metals and polymers [J]. Phys. Rev., 1994, 49B: 6494
[11] Makeev M A, Kalia R K, Nakano A, et al. Effect of geometry on stress relaxation in InAs /GaAs rectangular nanomesas: Multimillion-atom molecular dynamics simulations [J]. J. Appl. Phys., 2005, 98: 114313
[12] Lane J M D. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dynamics [J]. Phys. Rev., 2015, 92E: 012320
[13] Dong L, Schnitker J, Smith R W, et al. Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation study [J]. J. Appl. Phys., 1998, 83: 217
[14] Lau T T, Kushima A, Yip S. Atomistic simulation of creep in a nanocrystal [J]. Phys. Rev. Lett., 2010, 104: 175501
[15] Brostow W, Kubát J. Molecular-dynamics simulation of stress relaxation on a triangular lattice [J]. Phys. Rev., 1993, 47B: 7659
[16] Li Q K, Zhang Y, Chu W Y. Molecular dynamics simulation of plastic deformation during nanoindentation [J]. Acta Metall. Sin., 2004, 40: 1238
[16] (李启楷, 张 跃, 褚武杨. 纳米压痕形变过程的分子动力学模拟 [J]. 金属学报, 2004, 40: 1238)
[17] Zhu Y, Zhang Y C, Qi S H, et al. Titanium nanometric cutting process based on molecular dynamics [J]. Rare Met. Mater. Eng., 2016, 45: 897
[17] (朱 瑛, 张银成, 齐顺河等. 基于分子动力学的金属钛纳米切削过程研究 [J]. 稀有金属材料与工程, 2016, 45: 897)
[18] Wang C H, Fang T H, Cheng P C, et al. Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys [J]. J. Mol. Model., 2015, 21: 161
[19] Fang L, Sun K, Shi J Q, et al. Movement patterns of ellipsoidal particles with different axial ratios in three-body abrasion of monocrystalline copper: A large scale molecular dynamics study [J]. RSC Adv., 2017, 7: 26790
[20] Thouless M D, Gupta J, Harper J M E. Stress development and relaxation in copper films during thermal cycling [J]. J. Mater. Res., 1993, 8: 1845
[21] Taub A I, Luborsky F E. Creep, stress relaxation and structural change of amorphous alloys [J]. Acta Metall., 1981, 29: 1939
[22] Gupta I, Li J C M. Stress relaxation, internal stress, and work hardening in some bcc metals and alloys [J]. Metall. Trans., 1970, 1: 2323
[23] Bao Y W, Zhou Y C. Evaluating high-temperature modulus and elastic recovery of Ti3SiC2 and Ti3AlC2 ceramics [J]. Mater. Lett., 2003, 57: 4018
[24] Shi J Q, Zhang Y N, Sun K, et al. Effect of water film on the plastic deformation of monocrystalline copper [J]. RSC Adv., 2016, 6: 96824
[25] Shi J Q, Chen J, Sun K, et al. Water film facilitating plastic deformation of Cu thin film under different nanoindentation modes: A molecular dynamics study [J]. Mater. Chem. Phys., 2017, 198: 177
[26] Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev., 1984, 29B: 6443
[27] Daw M S, Foiles S M, Baskes M I. The embedded-atom method: A review of theory and applications [J]. Mater. Sci. Rep., 1993, 9: 251
[28] Girifalco L A, Weizer V G. Application of the Morse potential function to cubic metals [J]. Phys. Rev., 1959, 114: 687
[29] Ren J Q, Zhao J S, Dong Z G, et al. Molecular dynamics study on the mechanism of AFM-based nanoscratching process with water-layer lubrication [J]. Appl. Surf. Sci., 2015, 346: 84
[30] Boda D, Henderson D. The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture [J]. Mol. Phys., 2008, 106: 2367
[31] Al-Matar A K, Rockstraw D A. A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters [J]. J. Comput. Chem., 2004, 25: 660
[32] Werder T, Walther J H, Jaffe R L, et al. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes [J]. J. Phys. Chem., 2003, 107B: 1345
[1] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[2] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[3] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[4] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[5] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[6] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[7] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[8] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[9] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
[10] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[11] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[12] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[13] Weifeng HE, Xiang LI, Xiangfan NIE, Yinghong LI, Sihai LUO. Study on Stability of Residual Stress Induced by Laser Shock Processing in Titanium Alloy Thin-Components[J]. 金属学报, 2018, 54(3): 411-418.
[14] Jin WANG, Liming YU, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Crystal Orientation and He Density on Crack Propagation Behavior of bcc-Fe[J]. 金属学报, 2018, 54(1): 47-54.
[15] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
No Suggested Reading articles found!