Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (5): 776-784    DOI: 10.11900/0412.1961.2019.00277
Current Issue | Archive | Adv Search |
Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites
LI Yuancai, JIANG Wugui(), ZHOU Yu
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
Download:  HTML  PDF(2964KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The performance of the new generation aero-engine is strongly dependent on the application of integral blisk technologies, while the high-risk failure of integral disk joints severely restricts the promotion of those technologies. Therefore, the molecular dynamics method is used to investigate the influence of nanopores on the tensile properties of single crystal/polycrystalline Ni composites. The results show that the addition of single crystal nickel can increase the tensile strength of single crystal/polycrystalline Ni compared with polycrystalline nickel. The influence of pore position distribution on the tensile properties of single crystal/polycrystalline Ni is investigated. The simulation results show that nanopore defects in a single crystal region significantly aggravate the fracture at the single crystal/polycrystalline Ni interface. Pores not only penetrate the interface of composites but also rapidly expand inside the single crystal and the polycrystalline crystal, in which the interface of composites is further reduced resulting in the failure acceleration of single crystal/polycrystalline Ni composites. On the contrary, when the pores are in a polycrystalline region, the interface of single crystal/polycrystalline Ni hinders the amorphization of the polycrystalline nickel side and inhibits the pores from spreading toward the interface. When the pores are in the interface region, the pores do not continue to expand into the single crystal, but propagate inside the polycrystalline crystal. The effect of the porosity of interface pores on the tensile properties of single crystal/polycrystalline Ni is also discussed. It is found that the tensile strengthof single crystal/polycrystalline Ni decreases rapidly when the void porosity exceeds 0.8%. Finally, the influence of the number of voids on the tensile properties while maintaining the porosity of the interface pores is analyzed. When the porosity of the prefabricated pores of the interface is kept constant at 0.8%, the larger the number of pores (i.e., the smaller the pores), the larger the elastic modulus. In the plastic deformation stage, due to the large number of dispersed small pore structures at the interface of the single crystal/polycrystalline Ni composites, the dislocation motion is hindered, which plays a certain strengthening role and improves the tensile strength of the single crystal/polycrystalline Ni composites. It can be concluded that single crystal/polycrystalline Ni with dispersed small pores has better tensile properties than those with large pores.

Key words:  molecular dynamics      prefabricated nanopore      single crystal/polycrystalline Ni composites      tensile property      pore location      porosity     
Received:  19 August 2019     
ZTFLH:  TB31  
Fund: National Natural Science Foundation of China(11772145)
Corresponding Authors:  JIANG Wugui     E-mail:  jiangwugui@nchu.edu.cn

Cite this article: 

LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites. Acta Metall Sin, 2020, 56(5): 776-784.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00277     OR     https://www.ams.org.cn/EN/Y2020/V56/I5/776

Fig.1  Molecular dynamics models of single crystal nickel (a), polycrystalline nickel (b) and the schematic construction of a single crystal/polycrystalline nickel composites in which prefabricated voids are located on the central line of the construction (The distance between prefabricated void centers d=4, 8 or 10 nm) (c)
Fig.2  Tensile stress-strain curves of different constructions of crystalline nickel with void-free and with a prefabricated void with radius R=1.1 nm
Fig.3  Tensile stress-strain curves of single crystal/polycrystalline Ni composites with void-free or prefabricated voids located on the central line of the construction near the single crystal side (a), near the polycrystalline side (b) and near the interface of single crystal/polycrystalline nickel composites (c) (ε—strain)
Fig.4  Atomic snapshots of single crystal/polycrystalline nickel composites, as shown in Fig.1, with prefabricated voids with R=0.6 nm near the single crystal side (a~c), prefabricated voids with R=0.5 nm near the polycrystal side (d~f) and prefabricated voids with R=0.6 nm near the interface in single crystal/polycrystalline nickel interface (g~i) under different ε
(a) ε=0.099 (b) ε=0.139 (c) ε=0.199
(d) ε=0.069 (e) ε=0.246 (f) ε=0.346
(g) ε=0.034 (h) ε=0.256 (i) ε=0.369
Fig.5  Stress-strain curves (a) and elastic modulus variation curve (b) of single crystal/polycrystalline nickel composites with void-free and different numbers of prefabricated voids (N) in the interface of single crystal/polycrystalline nickel composites
Fig.6  Atomic snapshots of single crystal/polycrystalline nickel composites with prefabricated void with R=0.5848 nm in the interface of single crystal/polycrystalline nickel composites under ε=0.099 (a), ε=0.199 (b) and ε=0.324 (c)
Fig.7  Radial distribution function (G(r)) curves of single crystal/polycrystalline nickel composites under different strains (r—distance between atoms)
1 Liu G Y. Molecular dynamics simulation of hole tensile deformation in nanocrystalline copper [J]. J. At. Mol. Phys., 2004, 21(Suppl.): 377
刘光勇. 纳米单晶铜中孔洞拉伸变形的分子动力学模拟 [J]. 原子与分子物理学报, 2004, 21(增刊): 377
2 Zhang N. Molecular dynamic simulation on mechanical behavior of nano-bicrystal copper under uniaxial tension [D]. Wuhan: Huazhong University of Science and Technology, 2008
张 宁. 纳米双晶铜单向拉伸力学行为的分子动力学模拟 [D]. 武汉: 华中科技大学, 2008
3 Yang X H, Zhou T, Chen C Y. Effective elastic modulus and atomic stress concentration of single crystal nano-plate with void [J]. Comput. Mater. Sci., 2007, 40: 51
4 Liu T, Deng Q, Liu Y, et al. Strength analysis of an aero engine blisk [J]. Mech. Res., Appl., 2015, 28(4): 94
刘 涛, 邓 强, 刘 源等. 某型航空发动机整体叶盘强度分析 [J]. 机械研究与应用, 2015, 28(4): 94
5 Qin D S, Chen B Y, Sun J N. Numerical simulation on the enhanced heat transfer effects of the blisk to the blades and disk in the turbine [J]. Tactical Missile Technol., 2015, (2): 49
秦德胜, 陈宝延, 孙纪宁. 整体叶盘对涡轮叶盘间传热强化的数值研究 [J]. 战术导弹技术, 2015, (2): 49
6 Peng X J, Zhu W J, Chen K G, et al. Molecular dynamics simulations of void coalescence in monocrystalline copper under loading and unloading [J]. J. Appl. Phys., 2016, 119: 165901
7 Rui Z Y, Cao H, Luo D C, et al. Effect of hole size on single crystal γ-TiAl alloy crack propagation based on molecular dynamics simulation [J]. Rare Met. Mater. Eng., 2017, 46: 2505
芮执元, 曹 卉, 罗德春等. 单晶γ-TiAl中孔洞尺寸对裂纹扩展影响的分子动力学模拟 [J]. 稀有金属材料与工程, 2017, 46: 2505
8 Luo D C, Zhang L, Fu R, et al. Molecular dynamics simulation of nano single crystal gamma-TiAl alloy strain rate effect [J]. Rare Met. Mater. Eng., 2018, 47: 853
罗德春, 张 玲, 付蓉等. 纳米单晶γ-TiAl合金应变速率效应分子动力学模拟 [J]. 稀有金属材料与工程, 2018, 47: 853
9 Shang J, Yang F, Li C, et al. Size effect on the plastic deformation of pre-void Ni/Ni3Al interface under uniaxial tension: A molecular dynamics simulation [J]. Comput. Mater. Sci., 2018, 148: 200
10 Zhu P Z, Hu Y Z, Wang H. Atomistic simulations of the effect of a void on nanoindentation response of nickel [J]. Sci. China Phys. Mech. Astron., 2010, 53: 1716
11 Ito A, Okamoto S. Tensile and shearing properties of vacancy-containing graphene using molecular dynamics simulations [J]. J. Commun. Comput., 2013, 10: 9
12 Yang B, Zheng B L, Hu X J, et al. Effect of void on nanoindentation process of Ni-based single crystal alloy [J]. Acta Metall. Sin., 2016, 52: 129
杨 彪, 郑百林, 胡兴健等. 空洞对镍基单晶合金纳米压痕过程的影响 [J]. 金属学报, 2016, 52: 129
13 Guo J X, Wang B, Yang Z Y. Molecular dynamics simulations on the mechanical properties of graphene/Cu composites [J]. Acta Mater. Compos. Sin., 2014, 31: 152
郭俊贤, 王 波, 杨振宇. 石墨烯/Cu复合材料力学性能的分子动力学模拟 [J]. 复合材料学报, 2014, 31: 152
14 Hua J, Song C, Duan Z R, et al. Molecular dynamics simulations of the shear mechanical properties of graphene/copper composites [J]. Acta Mater. Compos. Sin., 2018, 35: 632
华 军, 宋 郴, 段志荣等. 石墨烯/铜复合材料剪切性能的分子动力学模拟 [J]. 复合材料学报, 2018, 35: 632
15 Borg U, Niordson C F, Kysar J W. Size effects on void growth in single crystals with distributed voids [J]. Int. J. Plast., 2008, 24: 688
16 Stewart D, Cheong K S. Molecular dynamics simulations of dislocations and nanocrystals [J]. Curr. Appl. Phys., 2008, 8: 494
17 Huang M S, Li Z H, Wang C. Discrete dislocation dynamics modelling of microvoid growth and its intrinsic mechanism in single crystals [J]. Acta Mater., 2007, 55: 1387
18 Prithivirajan V, Sangid M D. The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity [J]. Mater. Des., 2018, 150: 139
19 Ruestes C J, Bringa E M, Stukowski A, et al. Atomistic simulation of the mechanical response of a nanoporous body-centered cubic metal [J]. Scr. Mater., 2013, 68: 817
20 Horstemeyer M F, Farkas D, Kim S, et al. Nanostructurally small cracks (NSC): A review on atomistic modeling of fatigue [J]. Int. J. Fatigue, 2010, 32: 1473
21 Yuan F P, Wu X L. Scaling laws and deformation mechanisms of nanoporous copper under adiabatic uniaxial strain compression [J]. AIP Adv., 2014, 4: 127109
22 Cao A J, Wei Y G. Atomistic simulations of crack nucleation and intergranular fracture in bulk nanocrystalline nickel [J]. Phys. Rev., 2007, 76B: 024113
23 Yi L J, Chang T C, Feng X Q, et al. Giant energy absorption capacity of graphene-based carbon honeycombs [J]. Carbon, 2017, 118: 348
24 Zhou Y, Jiang W G, Feng X Q, et al. In-plane compressive behavior of graphene-coated aluminum nano-honeycombs [J]. Comput. Mater. Sci., 2019, 156: 396
25 Wen Y H, Zhu Z Z, Zhu R Z. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects [J]. Comput. Mater. Sci., 2008, 41: 553
26 Zhou Y, Jiang W G, Li D S, et al. Study on lightweight and strengthening effect of carbon nanotube in highly ordered nanoporous nickel: A molecular dynamics study [J]. Appl. Sci., 2019, 9: 352
27 Mishin Y, Farkas D, Mehl M J, et al. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations [J]. Phys. Rev., 1999, 59B: 3393
28 Ackland G J, Tichy G, Vitek V, et al. Simple N-body potentials for the noble metals and nickel [J]. Philos. Mag., 1987, 56A: 735
29 Chang L, Zhou C Y, Wen L L, et al. Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire [J]. Comput. Mater. Sci., 2017, 128: 348
30 Ma B, Rao Q H, He Y H. Molecular dynamics simulation of temperature effect on tensile mechanical properties of single crystal tungsten nanowire [J]. Comput. Mater. Sci., 2016, 117: 40
31 Shi G J, Wang J G, Hou Z Y, et al. Simulation study of the effect of strain rate on the mechanical properties and tensile deformation of gold nanowire [J]. Mod. Phys. Lett., 2017, 31B: 1750247
32 Gao A, Mukherjee S, Srivastava I, et al. Atomistic origins of ductility enhancement in metal oxide coated silicon nanowires for Li‐ion battery anodes [J]. Adv. Mater. Interfaces, 2017, 4: 1700920
33 Cheng Q, Wu H A, Wang Y, et al. Pseudoelasticity of Cu-Zr nanowires via stress-induced martensitic phase transformations [J]. Appl. Phys. Lett., 2009, 95: 021911
doi: 10.1063/1.3183584
34 Zheng M. Molecular dynamics simulation of tensile mechanical properties and defect behavior of metal-single crystal [D]. Nanjing: Nanjing University of Science and Technology, 2007
郑 茂. 金属单晶拉伸力学性能及缺陷行为的分子动力学模拟 [D]. 南京: 南京理工大学, 2007
[1] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[2] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[3] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[4] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[5] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[6] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[7] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[8] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[9] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[10] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[11] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
[12] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[13] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[14] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[15] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
No Suggested Reading articles found!