Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (6): 585-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Enhancing Role of Stress on Electric Field Induced Delayed Fracture of a PZT--5 Ferroelelctric Ceramics
WANG Yi; CHU Wuyang; SU Yanjing; GAO Kewei; QIAO Lijie
Department of Materials Physics; University of Science Technology Beijing; Beijing 100083
Download:  PDF(14039KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of applied stress intensity factor on the electric field induced delayed fracture of PZT 5 ferroelectric ceramics in silicon oil, has been investigated using single edge notched specimens poled along the longitudinal direction. The results show that the critical electric field for instant fracture in silicon oil decreases linearly with increasing the applied stress intensity factor. The threshold electric field for electric field induced delayed fracture in silicon oil decreases linearly with increasing the applied stress intensity factor. The results indicate that there exists a coupling action between stress, electric field and environment on the delayed fracture of the ferroelectric ceramics.
Key words:  PZT ceramics      stress      electric field induced instant fracture      
Received:  17 June 2003     
ZTFLH:  TG111.91  
Corresponding Authors:  QIAO Lijie     E-mail:  lqiao@ustb.edu.cn

Cite this article: 

WANG Yi; CHU Wuyang; SU Yanjing; GAO Kewei; QIAO Lijie. Enhancing Role of Stress on Electric Field Induced Delayed Fracture of a PZT--5 Ferroelelctric Ceramics. Acta Metall Sin, 2004, 40(6): 585-.

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I6/585

[1] Cross L E. In: Setler N, Colla E L eds, Ferroelectric Ceramics: tailoring properites for specific applications in ferroelectric ceramic, Birkhauser Verlag, Basel, 1993, 1
[2] Hao T H, Gong X, Suo Z. J Mech Phys Solids, 1996; 44:23
[3] Kim S J, Jiang Q. Smart, Mater Struct, 1996; 5: 321
[4] Wang Y, Chu W Y, Gao K W, Su Y J, Qiao L J. Appl Phys Lett, 2003; 82: 1583
[5] Wang Y, Chu W Y, Su Y J, Qiao L J. Mater Lett, 2003;57: 1156
[6] Wang Y, Chu W Y, Su Y J, Qiao L J. Mater Sci Eng B,2002, 95: 263
[7] Wang Y, Chu W Y, Su Y J, Gao K W, Qiao L J. Acta Metall Sin, 2003; 39: 182(王毅, 褚武扬, 宿彦京, 高克玮, 乔利杰. 金属学报,2003;39: 182)
[8] Wang Y, Chu W Y, Su Y J, Gao K W, Qiao L J. Acta Metall Sin, 2002; 38: 625(王毅, 褚武扬, 宿彦京, 高克玮, 乔利杰. 金属学报, 2003;38: 625)
[9] Fu R, Zhang T Y. Acta Mater, 2000; 48: 1729
[10] Yang W. Mechatronic Reliability. Beijing: Tsinghua University Press, 2001: 151(杨卫. 力电失效学.北京: 清华大学出版社, 2001: 151)
[1] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[2] KE Linda,YIN Jie,ZHU Haihong,PENG Gangyong,SUN Jingli,CHEN Changpeng,WANG Guoqing,LI Zhongquan,ZENG Xiaoyan. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting[J]. 金属学报, 2020, 56(3): 374-384.
[3] BI Zhongnan,QIN Hailong,DONG Zhiguo,WANG Xiangping,WANG Ming,LIU Yongquan,DU Jinhui,ZHANG Ji. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. 金属学报, 2019, 55(9): 1160-1174.
[4] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[5] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[6] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[7] Hailong QIN,Ruiyao ZHANG,Zhongnan BI,Lee Tung Lik,Hongbiao DONG,Jinhui DU,Ji ZHANG. Study on the Evolution of Residual Stress During Ageing Treatment in a GH4169 Alloy Disk[J]. 金属学报, 2019, 55(8): 997-1007.
[8] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[9] Wenshu TANG,Junfeng XIAO,Yongjun LI,Jiong ZHANG,Sifeng GAO,Qing NAN. Effect of Re-Heat Rejuvenation Treatment on γ′ Microstructure of Directionally SolidifiedSuperalloy Damaged by Creep[J]. 金属学报, 2019, 55(5): 601-610.
[10] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[11] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[12] Ping DENG,Chen SUN,Qunjia PENG,En-Hou HAN,Wei KE,Zhijie JIAO. Study on Irradiation Assisted Stress Corrosion Cracking of Nuclear Grade 304 Stainless Steel[J]. 金属学报, 2019, 55(3): 349-361.
[13] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[14] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[15] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
No Suggested Reading articles found!