Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (6): 585-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Enhancing Role of Stress on Electric Field Induced Delayed Fracture of a PZT--5 Ferroelelctric Ceramics
WANG Yi; CHU Wuyang; SU Yanjing; GAO Kewei; QIAO Lijie
Department of Materials Physics; University of Science Technology Beijing; Beijing 100083
Cite this article: 

WANG Yi; CHU Wuyang; SU Yanjing; GAO Kewei; QIAO Lijie. Enhancing Role of Stress on Electric Field Induced Delayed Fracture of a PZT--5 Ferroelelctric Ceramics. Acta Metall Sin, 2004, 40(6): 585-.

Download:  PDF(14039KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of applied stress intensity factor on the electric field induced delayed fracture of PZT 5 ferroelectric ceramics in silicon oil, has been investigated using single edge notched specimens poled along the longitudinal direction. The results show that the critical electric field for instant fracture in silicon oil decreases linearly with increasing the applied stress intensity factor. The threshold electric field for electric field induced delayed fracture in silicon oil decreases linearly with increasing the applied stress intensity factor. The results indicate that there exists a coupling action between stress, electric field and environment on the delayed fracture of the ferroelectric ceramics.
Key words:  PZT ceramics      stress      electric field induced instant fracture      
Received:  17 June 2003     
ZTFLH:  TG111.91  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I6/585

[1] Cross L E. In: Setler N, Colla E L eds, Ferroelectric Ceramics: tailoring properites for specific applications in ferroelectric ceramic, Birkhauser Verlag, Basel, 1993, 1
[2] Hao T H, Gong X, Suo Z. J Mech Phys Solids, 1996; 44:23
[3] Kim S J, Jiang Q. Smart, Mater Struct, 1996; 5: 321
[4] Wang Y, Chu W Y, Gao K W, Su Y J, Qiao L J. Appl Phys Lett, 2003; 82: 1583
[5] Wang Y, Chu W Y, Su Y J, Qiao L J. Mater Lett, 2003;57: 1156
[6] Wang Y, Chu W Y, Su Y J, Qiao L J. Mater Sci Eng B,2002, 95: 263
[7] Wang Y, Chu W Y, Su Y J, Gao K W, Qiao L J. Acta Metall Sin, 2003; 39: 182(王毅, 褚武扬, 宿彦京, 高克玮, 乔利杰. 金属学报,2003;39: 182)
[8] Wang Y, Chu W Y, Su Y J, Gao K W, Qiao L J. Acta Metall Sin, 2002; 38: 625(王毅, 褚武扬, 宿彦京, 高克玮, 乔利杰. 金属学报, 2003;38: 625)
[9] Fu R, Zhang T Y. Acta Mater, 2000; 48: 1729
[10] Yang W. Mechatronic Reliability. Beijing: Tsinghua University Press, 2001: 151(杨卫. 力电失效学.北京: 清华大学出版社, 2001: 151)
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[5] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[6] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[7] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[8] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[11] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[12] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[13] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[14] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[15] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
No Suggested Reading articles found!