Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (5): 795-800    DOI: 10.11900/0412.1961.2019.00305
Current Issue | Archive | Adv Search |
Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics
LI Meilin1, LI Saiyi1,2()
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410012, China
Cite this article: 

LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics. Acta Metall Sin, 2020, 56(5): 795-800.

Download:  HTML  PDF(1661KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium has a hcp lattice structure, in which insufficient independent slip systems are available to accommodate applied plastic deformation at room temperature. The ductility of Mg is intimately related to the fundamental behaviors of pyramidal <c+a> dislocations, which are the major contributor to c-axis strain. In this study, the motion of <c+a> edge dislocation on the second-order pyramidal plane in Mg under external shear stress of different magnitudes and directions are simulated by molecular dynamics at 300 K, and the motion and structural evolution of dislocations are studied. The results show that the effective shear stress causing dislocation motion is lower than the external applied one and the dislocation velocity increases linearly with increasing applied shear stress. Under the same level of external shear stress, the dislocation velocity in shearing leading to c-axis tension deformation is higher than that for shearing leading to c-axis compression, and in both cases the corresponding viscous drag coefficients are significantly higher than those for basal and prismatic edge dislocations at the same temperature. The tension-compression asymmetry of dislocation motion is essentially related to the effect of applied shear stress on the extended dislocation width.

Key words:  dislocation      molecular dynamics      slip      drag coefficient     
Received:  16 September 2019     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51571213);Natural Science Foundation of Hunan Province(2017JJ2312)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00305     OR     https://www.ams.org.cn/EN/Y2020/V56/I5/795

Fig.1  Schematic of the model for the motion of an edge dislocation
Color online
Fig.2  Variations of effective shear stress (τeff) (a) and average effective shear stress (τˉeff) (b) with the applied shear stress (τapp) under positive shear (t—time)
Fig.3  Displacement (d)-t curves for the dislocation core under different τapp (positive shear) (The arrows indicate the starting points when τeff enters into a relatively stable stage as shown in Fig.2a)
Fig.4  Dislocation velocity (v) as a function of τˉeff under positive shear and negative shear
Fig.5  Dislocation core structures under τapp=50 MPa (a1, b1), τapp=150 MPa (a2, b2) and τapp=250 MPa (a3, b3) (l—width of extended dislocation, b—modulus of Burgers vector)
(a1~a3) positive shear (b1~b3) negative shear
Fig.6  Variations of l with τapp under positive shear and negative shear
1 Pollock T M. Weight loss with magnesium alloys [J]. Science, 2010, 328: 986
doi: 10.1126/science.1182848 pmid: 20489013
2 Chen Z H. Wrought Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2005: 48
陈振华. 变形镁合金 [M]. 北京: 化学工业出版社, 2005: 48
3 Liu B Y, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations [J]. Science, 2019, 365: 73
doi: 10.1126/science.aaw2843 pmid: 31273119
4 Bertin N, Tomé C N, Beyerlein I J, et al. On the strength of dislocation interactions and their effect on latent hardening in pure magnesium [J]. Int. J. Plast., 2014, 62: 72
5 Jiang J J, Miao L, Liang P, et al. Computational Material Science—Design Practice Method [M]. Shanghai: Higher Education Press, 2010: 162
江建军, 缪 灵, 梁 培等. 计算材料学——设计实践方法 [M]. 上海: 高等教育出版社, 2010: 162
6 Bacon D J, Osetsky Y N, Rodney D. Chapter 88 dislocation-obstacle interactions at the atomic level [J]. Dislocations Solids, 2009, 15: 1
7 Groh S, Marin E B, Horstemeyer M F, et al. Dislocation motion in magnesium: A study by molecular statics and molecular dynamics [J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 075009
8 Fan H D, El-Awady J A. Towards resolving the anonymity of pyramidal slip in magnesium [J]. Mater. Sci. Eng., 2015, A644: 318
9 Fan H D, Wang Q Y, Tian X B, et al. Temperature effects on the mobility of pyramidal <c+a> dislocations in magnesium [J]. Scr. Mater., 2017, 127: 68
10 Obara T, Yoshinga H, Morozumi S.{11$\bar{2}$2}<$\bar{1}$$\bar{1}$23> slip system in magnesium [J]. Acta Metall., 1973, 21: 845
11 Meyers M A, translated by Zhang Q M, Liu Y, Huang F L, et al. Dynamic Behavior of Materials [M]. Beijing: National Defense Industry Press, 2006: 230
(Meyers M A著>, 张庆明, 刘 彦, 黄风雷等译. 材料的动力学行为 [M]. 北京: 国防工业出版社, 2006: 230
12 Mordehai D, Ashkenazy Y, Kelson I, et al. Dynamic properties of screw dislocations in Cu: A molecular dynamics study [J]. Phys. Rev., 2003, 67B: 024112
13 Olmsted D L, Hector L GCurtinJr, , et al. Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys [J]. Modell. Simul. Mater. Sci. Eng., 2005, 13: 371
14 Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
15 Osetsky Y N, Bacon D J. An atomic-level model for studying the dynamics of edge dislocations in metals [J]. Modell. Simul. Mater. Sci. Eng., 2003, 11: 427
16 Kim K H, Jeon J B, Lee B J. Modified embedded-atom method interatomic potentials for Mg-X (X=Y, Sn, Ca) binary systems [J]. Calphad, 2015, 48: 27
17 Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath [J]. J. Chem. Phys., 1984, 81: 3684
doi: 10.1063/1.448118
18 Fan H D, El-Awady J A, Wang Q Y. Towards further understanding of stacking fault tetrahedron absorption and defect-free channels—A molecular dynamics study [J]. J. Nucl. Mater., 2015, 458: 176
doi: 10.1016/j.jnucmat.2014.12.082
19 Cho J, Molinari J F, Anciaux G. Mobility law of dislocations with several character angles and temperatures in FCC aluminum [J]. Int. J. Plast., 2017, 90: 66
20 Thompson A P, Plimpton S J, Mattson W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions [J]. J. Chem. Phys., 2009, 131: 154107
doi: 10.1063/1.3245303 pmid: 20568847
21 Regazzoni G, Kocks U F, Follansbee P S. Dislocation kinetics at high strain rates [J]. Acta Metall., 1987, 35: 2865
22 Stukowski A. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool [J]. Modelling Simul. Mater. Sci. Eng., 2010, 18: 015012
doi: 10.1093/nar/gky381 pmid: 29800260
23 Larsen P M, Schmidt S, Schiøtz J. Robust structural identification via polyhedral template matching [J]. Modell. Simul. Mater. Sci. Eng., 2016, 24: 055007
24 Hirth J P, Lothe J. Theory of Dislocations [M]. 2nd Ed., New York: John-Wiley, 1982: 73
25 Nabarro F R N. Dislocations in a simple cubic lattice [J]. Proc. Phys. Soc., 1947, 59: 256
doi: 10.1088/0959-5309/59/2/309
26 Kumar A, Morrow B M, McCabe R J, et al. An atomic-scale modeling and experimental study of <c+a> dislocations in Mg [J]. Mater. Sci. Eng., 2017, A695: 270
[1] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[2] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[3] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[4] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[7] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[8] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[9] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[10] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[11] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[12] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[13] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[14] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[15] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
No Suggested Reading articles found!