Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (5): 795-800    DOI: 10.11900/0412.1961.2019.00305
Current Issue | Archive | Adv Search |
Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics
LI Meilin1, LI Saiyi1,2()
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410012, China
Download:  HTML  PDF(1661KB) 
Export:  BibTeX | EndNote (RIS)      

Magnesium has a hcp lattice structure, in which insufficient independent slip systems are available to accommodate applied plastic deformation at room temperature. The ductility of Mg is intimately related to the fundamental behaviors of pyramidal <c+a> dislocations, which are the major contributor to c-axis strain. In this study, the motion of <c+a> edge dislocation on the second-order pyramidal plane in Mg under external shear stress of different magnitudes and directions are simulated by molecular dynamics at 300 K, and the motion and structural evolution of dislocations are studied. The results show that the effective shear stress causing dislocation motion is lower than the external applied one and the dislocation velocity increases linearly with increasing applied shear stress. Under the same level of external shear stress, the dislocation velocity in shearing leading to c-axis tension deformation is higher than that for shearing leading to c-axis compression, and in both cases the corresponding viscous drag coefficients are significantly higher than those for basal and prismatic edge dislocations at the same temperature. The tension-compression asymmetry of dislocation motion is essentially related to the effect of applied shear stress on the extended dislocation width.

Key words:  dislocation      molecular dynamics      slip      drag coefficient     
Received:  16 September 2019     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51571213);Natural Science Foundation of Hunan Province(2017JJ2312)
Corresponding Authors:  LI Saiyi     E-mail:

Cite this article: 

LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics. Acta Metall Sin, 2020, 56(5): 795-800.

URL:     OR

Fig.1  Schematic of the model for the motion of an edge dislocation
Color online
Fig.2  Variations of effective shear stress (τeff) (a) and average effective shear stress (τˉeff) (b) with the applied shear stress (τapp) under positive shear (t—time)
Fig.3  Displacement (d)-t curves for the dislocation core under different τapp (positive shear) (The arrows indicate the starting points when τeff enters into a relatively stable stage as shown in Fig.2a)
Fig.4  Dislocation velocity (v) as a function of τˉeff under positive shear and negative shear
Fig.5  Dislocation core structures under τapp=50 MPa (a1, b1), τapp=150 MPa (a2, b2) and τapp=250 MPa (a3, b3) (l—width of extended dislocation, b—modulus of Burgers vector)
(a1~a3) positive shear (b1~b3) negative shear
Fig.6  Variations of l with τapp under positive shear and negative shear
1 Pollock T M. Weight loss with magnesium alloys [J]. Science, 2010, 328: 986
doi: 10.1126/science.1182848 pmid: 20489013
2 Chen Z H. Wrought Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2005: 48
陈振华. 变形镁合金 [M]. 北京: 化学工业出版社, 2005: 48
3 Liu B Y, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations [J]. Science, 2019, 365: 73
doi: 10.1126/science.aaw2843 pmid: 31273119
4 Bertin N, Tomé C N, Beyerlein I J, et al. On the strength of dislocation interactions and their effect on latent hardening in pure magnesium [J]. Int. J. Plast., 2014, 62: 72
5 Jiang J J, Miao L, Liang P, et al. Computational Material Science—Design Practice Method [M]. Shanghai: Higher Education Press, 2010: 162
江建军, 缪 灵, 梁 培等. 计算材料学——设计实践方法 [M]. 上海: 高等教育出版社, 2010: 162
6 Bacon D J, Osetsky Y N, Rodney D. Chapter 88 dislocation-obstacle interactions at the atomic level [J]. Dislocations Solids, 2009, 15: 1
7 Groh S, Marin E B, Horstemeyer M F, et al. Dislocation motion in magnesium: A study by molecular statics and molecular dynamics [J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 075009
8 Fan H D, El-Awady J A. Towards resolving the anonymity of pyramidal slip in magnesium [J]. Mater. Sci. Eng., 2015, A644: 318
9 Fan H D, Wang Q Y, Tian X B, et al. Temperature effects on the mobility of pyramidal <c+a> dislocations in magnesium [J]. Scr. Mater., 2017, 127: 68
10 Obara T, Yoshinga H, Morozumi S.{11$\bar{2}$2}<$\bar{1}$$\bar{1}$23> slip system in magnesium [J]. Acta Metall., 1973, 21: 845
11 Meyers M A, translated by Zhang Q M, Liu Y, Huang F L, et al. Dynamic Behavior of Materials [M]. Beijing: National Defense Industry Press, 2006: 230
(Meyers M A著>, 张庆明, 刘 彦, 黄风雷等译. 材料的动力学行为 [M]. 北京: 国防工业出版社, 2006: 230
12 Mordehai D, Ashkenazy Y, Kelson I, et al. Dynamic properties of screw dislocations in Cu: A molecular dynamics study [J]. Phys. Rev., 2003, 67B: 024112
13 Olmsted D L, Hector L GCurtinJr, , et al. Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys [J]. Modell. Simul. Mater. Sci. Eng., 2005, 13: 371
14 Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
15 Osetsky Y N, Bacon D J. An atomic-level model for studying the dynamics of edge dislocations in metals [J]. Modell. Simul. Mater. Sci. Eng., 2003, 11: 427
16 Kim K H, Jeon J B, Lee B J. Modified embedded-atom method interatomic potentials for Mg-X (X=Y, Sn, Ca) binary systems [J]. Calphad, 2015, 48: 27
17 Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath [J]. J. Chem. Phys., 1984, 81: 3684
doi: 10.1063/1.448118
18 Fan H D, El-Awady J A, Wang Q Y. Towards further understanding of stacking fault tetrahedron absorption and defect-free channels—A molecular dynamics study [J]. J. Nucl. Mater., 2015, 458: 176
doi: 10.1016/j.jnucmat.2014.12.082
19 Cho J, Molinari J F, Anciaux G. Mobility law of dislocations with several character angles and temperatures in FCC aluminum [J]. Int. J. Plast., 2017, 90: 66
20 Thompson A P, Plimpton S J, Mattson W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions [J]. J. Chem. Phys., 2009, 131: 154107
doi: 10.1063/1.3245303 pmid: 20568847
21 Regazzoni G, Kocks U F, Follansbee P S. Dislocation kinetics at high strain rates [J]. Acta Metall., 1987, 35: 2865
22 Stukowski A. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool [J]. Modelling Simul. Mater. Sci. Eng., 2010, 18: 015012
doi: 10.1093/nar/gky381 pmid: 29800260
23 Larsen P M, Schmidt S, Schiøtz J. Robust structural identification via polyhedral template matching [J]. Modell. Simul. Mater. Sci. Eng., 2016, 24: 055007
24 Hirth J P, Lothe J. Theory of Dislocations [M]. 2nd Ed., New York: John-Wiley, 1982: 73
25 Nabarro F R N. Dislocations in a simple cubic lattice [J]. Proc. Phys. Soc., 1947, 59: 256
doi: 10.1088/0959-5309/59/2/309
26 Kumar A, Morrow B M, McCabe R J, et al. An atomic-scale modeling and experimental study of <c+a> dislocations in Mg [J]. Mater. Sci. Eng., 2017, A695: 270
[1] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[2] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[3] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[4] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[5] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[6] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[7] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[8] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[9] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[10] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[11] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
[12] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[13] XIONG Jian,WEI Dean,LU Songjiang,KAN Qianhua,KANG Guozheng,ZHANG Xu. A Three-Dimensional Discrete Dislocation Dynamics Simulation on Micropillar Compression of Single Crystal Copper with Dislocation Density Gradient[J]. 金属学报, 2019, 55(11): 1477-1486.
[14] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[15] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
No Suggested Reading articles found!