Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (2): 274-280    DOI: 10.11900/0412.1961.2018.00190
Orginal Article Current Issue | Archive | Adv Search |
Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations
Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU()
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering,Tianjin University, Tianjin 300354, China
Download:  HTML  PDF(5267KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The requirement of meeting rapidly growing demand for energy while maintaining environmentally friendly has been motivating the hot research on thermonuclear fusion. One of the key issues in future fusion reactors is that structural materials, especially fusion device first wall material, will suffer from He cumulative effects and atomic displacements from radiation cascades. Such harsh service conditions lead to the formation of He bubbles, which are responsible for severe degradation of the structural materials (e.g., swelling, embrittlement, loss of ductility etc.). It is thus essential to further understand the formation of He bubbles and hardening characteristics for the development of future nuclear materials. In this work, the behaviors of He segregation and tensile deformation have been investigated by molecular dynamics (MD) simulations in α-Fe with and without dislocations (dislocation densities are 0 and 3.36×1011 cm-2, respectively ) and at the annealing temperatures of 300 and 600 K with 0.1%He (atomic fraction) injection. The results show that during the process of 300 K annealing, the effect of dislocation is rather weak, and He atoms are easier to form small He clusters by self-trapping. The size of He clusters and the number of dislocation loops are lower. Furthermore, higher temperature can notably intensify He diffusion, and the size of He clusters and the number of dislocation loops both increase at 600 K. In the process of tensile deformation, dislocations can notably accelerate small He clusters to develop into larger He bubbles, which leads to lower yield stress and strain. In addition, at 300 K, the model mainly occurs to brittle fracture and the dislocations density is lower. At 600 K, larger He bubble can promote dislocation multiply and enhance the deformability. Therefore, there exhibits a better plasticity in the model.

Key words:  α-Fe;      dislocation      temperature      He      molecular dynamics     
Received:  14 May 2018     
ZTFLH:  TG111.91  
Fund: Supported by National Natural Science Foundation of China (Nos.51474156 and U1660201) and National Magnetic Confinement Fusion Energy Research Project (No.2015GB119001)

Cite this article: 

Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations. Acta Metall Sin, 2019, 55(2): 274-280.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00190     OR     https://www.ams.org.cn/EN/Y2019/V55/I2/274

Fig.1  Cross sections of models A (a) and B (b) (Atoms are colored according to their common neighbor analysis (CNA). The bcc atoms are colored in blue, and the distorted structure atoms (for example dislocations) are colored in white)
Model x / nm y / nm z / nm Number of dislocations Number of atoms
A 19.8 32.4 4.65 0 256000
B 19.8 32.4 4.65 2 255720
Table 1  Geometrical dimensions of models A and B
Fig.2  Exemplary snapshots of He clusters distributions at 300 K for model A (a) and model B (b), and the size distribution histogram in these two models (c)
Fig.3  Stress-strain (σ-ε) curves (a) and dislocation density-strain curves (b) of models A and B at 300 K
Fig.4  Evolutions of atomistic configurations for model A (a~c) and model B (d~f) with increasing strains at 300 K (a) ε=0.095 (b) ε=0.105 (c) ε=0.17 (d) ε=0.08 (e) ε=0.095 (f) ε=0.17
Fig.5  Exemplary snapshots of He clusters distributions at 600 K for model A (a) and model B (b), and the size distribution histogram in these two models (c)
Fig.6  Stress-strain curves (a) and dislocation density-strain curves (b) of models A and B at 600 K
Fig.7  Evolutions of atomistic configurations of models A (a~c) and B (d~f) with increasing strains at 600 K (a) ε=0.08 (b) ε=0.11 (c) ε=0.17 (d) ε=0.08 (e) ε=0.11 (f) ε=0.30
[1] Ullmaier H.The influence of helium on the bulk properties of fusion reactor structural materials[J]. Nucl. Fusion, 1984, 24: 1039
[2] Zhou X S, Liu C X, Yu L M, et al.Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: a review[J]. J. Mater. Sci. Technol., 2015, 31: 235
[3] Samaras M.Multiscale modelling: The role of helium in iron[J]. Mater. Today, 2009, 12: 46
[4] Bloom E E.The challenge of developing structural materials for fusion power systems [J]. J. Nucl. Mater., 1998, 258-263: 7
[5] Feng Y C, Xing W W, Wang S L, et al.First-principles study of hydrogen behaviors at oxide/ferrite interface in ODS steels[J]. Acta Metall. Sin., 2018, 54: 325(冯宇超, 邢炜伟, 王寿龙等. ODS钢中氧化物/铁素体界面捕氢行为的第一原理研究[J]. 金属学报, 2018, 54: 325)
[6] Yang L, Gao F, Kurtz R J, et al.Atomistic simulations of helium clustering and grain boundary reconstruction in alpha-iron[J]. Acta Mater., 2015, 82: 275
[7] Zhang L, Fu C C, Hayward E, et al.Properties of He clustering in α-Fe grain boundaries[J]. J. Nucl. Mater., 2015, 459: 247
[8] Wang Y X, Xu Q, Yoshiie T, et al.Effects of edge dislocations on interstitial helium and helium cluster behavior in α-Fe[J]. J. Nucl. Mater., 2008, 376: 133
[9] Martínez E, Schwen D, Caro A.Helium segregation to screw and edge dislocations in α-iron and their yield strength[J]. Acta Mater., 2015, 84: 208
[10] Ono K, Miyamoto M, Arakawa K, et al.Effects of precipitated helium, deuterium or alloy elements on glissile motion of dislocation loops in Fe-9Cr-2W ferritic alloy[J]. J. Nucl. Mater., 2014, 455: 162
[11] Yamamoto T, Odette G R, Miao P, et al. Helium effects on microstructural evolution in tempered martensitic steels: In situ helium implanter studies in HFIR [J]. J. Nucl. Mater., 2009, 386-388: 338
[12] Xu Q, Yamasaki H, Sugiura Y, et al.Effects of interactions between dislocations and/or vacancies and He atoms on mechanical property changes in Ni[J]. Mater. Sci. Eng., 2013, A586: 231
[13] Xu Q, Sugiura Y, Pan X Q, et al.Effects of dislocation-trapped helium on mechanical properties of Fe[J]. Mater. Sci. Eng., 2014, A612: 41
[14] Wei Y P, Liu P P, Zhu Y M, et al.Evaluation of irradiation hardening and microstructure evolution under the synergistic interaction of He and subsequent Fe ions irradiation in CLAM steel[J]. J. Alloys Compd., 2016, 676: 481
[15] Chen J, Jung P, Hoffelner W, et al.Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress[J]. Acta Mater., 2008, 56: 250
[16] Galindo-Nava E I, Basha B I Y, Rivera-Díaz-del-Castillo P E J. Hydrogen transport in metals: Integration of permeation, thermal desorption and degassing[J]. J. Mater. Sci. Technol., 2017, 33: 1433
[17] Li Q, Parish C M, Powers K A, et al.Helium solubility and bubble formation in a nanostructured ferritic alloy[J]. J. Nucl. Mater., 2014, 445: 165
[18] Shi J Y, Peng L, Ye M Y, et al.Molecular dynamics study: Effects of He bubble and Cr precipitate on tensile deformation of grain boundaries in α-Fe[J]. IEEE Trans. Plasma Sci., 2017, 45: 289
[19] Tschopp M A, Gao F, Yang L, et al.Binding energetics of substitutional and interstitial helium and di-helium defects with grain boundary structure in α-Fe[J]. J. Appl. Phys., 2014, 115: 033503
[20] Osetsky Y N, Stoller R E.Atomic-scale mechanisms of helium bubble hardening in iron[J]. J. Nucl. Mater., 2015, 465: 448
[21] Yang L, Gao F, Kurtz R J, et al.Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study[J]. Acta Mater., 2015, 97: 86
[22] Morishita K, Sugano R, Wirth B D, et al.Thermal stability of helium-vacancy clusters in iron[J]. Nucl. Instrum. Methods Phys. Res., 2003, 202B: 76
[23] Fu C C, Willaime F.Ab initio study of helium in α-Fe: Dissolution, migration, and clustering with vacancies[J]. Phys. Rev., 2005, 72B: 064117
[24] Stewart D, Osetskiy Y, Stoller R.Atomistic studies of formation and diffusion of helium clusters and bubbles in BCC iron[J]. J. Nucl. Mater., 2011, 417: 1110
[25] Jia X, Dai Y, Victoria M.The impact of irradiation temperature on the microstructure of F82H martensitic/ferritic steel irradiated in a proton and neutron mixed spectrum[J]. J. Nucl. Mater., 2002, 305: 1
[26] Li X C, Shu X L, Tao P, et al.Molecular dynamics simulation of helium cluster diffusion and bubble formation in bulk tungsten[J]. J. Nucl. Mater., 2014, 455: 544
[27] Ono K, Arakawa K, Hojou K.Formation and migration of helium bubbles in Fe and Fe-9Cr ferritic alloy [J].J. Nucl. Mater., 2002, 307-311: 1507
[28] Yang L, Zu X T, Gao F, et al.Dynamic interactions of helium-vacancy clusters with edge dislocations in α-Fe[J]. Physica, 2010, 405B: 1754
[29] Yang L, Zhu Z Q, Peng S M, et al.Effects of temperature on the interactions of helium-vacancy clusters with gliding edge dislocations in α-Fe[J]. J. Nucl. Mater., 2013, 441: 6
[30] Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117: 1
[31] Stukowski A.Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool[J]. Modell. Simul. Mater. Sci. Eng., 2009, 18: 015012
[32] Stukowski A, Albe K.Dislocation detection algorithm for atomistic simulations[J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 025016
[33] Yang L, Deng H Q, Gao F, et al.Atomistic studies of nucleation of He clusters and bubbles in bcc iron[J]. Nucl. Instrum. Methods Phys. Res., 2013, 303B: 68
[34] Prokhodtseva A, Décamps B, Sch?ublin R.Comparison between bulk and thin foil ion irradiation of ultra high purity Fe[J]. J. Nucl. Mater., 2013, 442(Suppl.1-3): S786
[35] Heinisch H L, Gao F, Kurtz R J, et al.Interaction of helium atoms with edge dislocations in α-Fe[J]. J. Nucl. Mater., 2006, 351: 141
[36] Wirth B D, Odette G R, Maroudas D, et al.Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron[J]. J. Nucl. Mater., 2000, 276: 33
[37] Marian J, Wirth B D, Perlado J M.Mechanism of formation and growth of <100> interstitial loops in ferritic materials[J]. Phys. Rev. Lett., 2002, 88: 255507
[38] Wang J, Yu L M, Huang Y, et al.Micromechanics mechanism of α-Fe with different types of edge dislocations under radiation damage[J]. Mater. Lett., 2018, 210: 325
[39] Ding M S, Du J P, Wan L, et al.Radiation-induced helium nanobubbles enhance ductility in submicron-sized single-crystalline copper[J]. Nano Lett., 2016, 16: 4118
[40] Hale L M, Zimmerman J A, Wong B M.Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys[J]. J. Chem. Phys., 2016, 144: 194705
[41] Carrington W, Hale K F, McLean D. Arrangement of dislocations in iron[J]. Proc. Roy. Soc., 1960, 259A: 203
[42] Ohr S M, Beshers D N.Crystallography of dislocation networks in annealed iron[J]. Philos. Mag., 1963, 8A: 1343
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-[J]. 金属学报, 2020, 56(6): 898-908.
[3] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[4] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[5] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[6] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[7] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[8] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[9] LIU Zhengdong,CHEN Zhengzong,HE Xikou,BAO Hansheng. Systematical Innovation of Heat Resistant Materials Used for 630~700 ℃ Advanced Ultra-Supercritical (A-USC)Fossil Fired Boilers[J]. 金属学报, 2020, 56(4): 539-548.
[10] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[11] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[12] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[13] DONG Han,LIAN Xintong,HU Chundong,LU Hengchang,PENG Wei,ZHAO Hongshan,XU Dexiang. High Performance Steels: the Scenario of Theoryand Technology[J]. 金属学报, 2020, 56(4): 558-582.
[14] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[15] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
No Suggested Reading articles found!