Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (2): 274-280    DOI: 10.11900/0412.1961.2018.00190
Orginal Article Current Issue | Archive | Adv Search |
Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations
Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU()
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering,Tianjin University, Tianjin 300354, China
Cite this article: 

Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations. Acta Metall Sin, 2019, 55(2): 274-280.

Download:  HTML  PDF(5267KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The requirement of meeting rapidly growing demand for energy while maintaining environmentally friendly has been motivating the hot research on thermonuclear fusion. One of the key issues in future fusion reactors is that structural materials, especially fusion device first wall material, will suffer from He cumulative effects and atomic displacements from radiation cascades. Such harsh service conditions lead to the formation of He bubbles, which are responsible for severe degradation of the structural materials (e.g., swelling, embrittlement, loss of ductility etc.). It is thus essential to further understand the formation of He bubbles and hardening characteristics for the development of future nuclear materials. In this work, the behaviors of He segregation and tensile deformation have been investigated by molecular dynamics (MD) simulations in α-Fe with and without dislocations (dislocation densities are 0 and 3.36×1011 cm-2, respectively ) and at the annealing temperatures of 300 and 600 K with 0.1%He (atomic fraction) injection. The results show that during the process of 300 K annealing, the effect of dislocation is rather weak, and He atoms are easier to form small He clusters by self-trapping. The size of He clusters and the number of dislocation loops are lower. Furthermore, higher temperature can notably intensify He diffusion, and the size of He clusters and the number of dislocation loops both increase at 600 K. In the process of tensile deformation, dislocations can notably accelerate small He clusters to develop into larger He bubbles, which leads to lower yield stress and strain. In addition, at 300 K, the model mainly occurs to brittle fracture and the dislocations density is lower. At 600 K, larger He bubble can promote dislocation multiply and enhance the deformability. Therefore, there exhibits a better plasticity in the model.

Key words:  α-Fe;      dislocation      temperature      He      molecular dynamics     
Received:  14 May 2018     
ZTFLH:  TG111.91  
Fund: Supported by National Natural Science Foundation of China (Nos.51474156 and U1660201) and National Magnetic Confinement Fusion Energy Research Project (No.2015GB119001)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00190     OR     https://www.ams.org.cn/EN/Y2019/V55/I2/274

Fig.1  Cross sections of models A (a) and B (b) (Atoms are colored according to their common neighbor analysis (CNA). The bcc atoms are colored in blue, and the distorted structure atoms (for example dislocations) are colored in white)
Model x / nm y / nm z / nm Number of dislocations Number of atoms
A 19.8 32.4 4.65 0 256000
B 19.8 32.4 4.65 2 255720
Table 1  Geometrical dimensions of models A and B
Fig.2  Exemplary snapshots of He clusters distributions at 300 K for model A (a) and model B (b), and the size distribution histogram in these two models (c)
Fig.3  Stress-strain (σ-ε) curves (a) and dislocation density-strain curves (b) of models A and B at 300 K
Fig.4  Evolutions of atomistic configurations for model A (a~c) and model B (d~f) with increasing strains at 300 K (a) ε=0.095 (b) ε=0.105 (c) ε=0.17 (d) ε=0.08 (e) ε=0.095 (f) ε=0.17
Fig.5  Exemplary snapshots of He clusters distributions at 600 K for model A (a) and model B (b), and the size distribution histogram in these two models (c)
Fig.6  Stress-strain curves (a) and dislocation density-strain curves (b) of models A and B at 600 K
Fig.7  Evolutions of atomistic configurations of models A (a~c) and B (d~f) with increasing strains at 600 K (a) ε=0.08 (b) ε=0.11 (c) ε=0.17 (d) ε=0.08 (e) ε=0.11 (f) ε=0.30
[1] Ullmaier H.The influence of helium on the bulk properties of fusion reactor structural materials[J]. Nucl. Fusion, 1984, 24: 1039
[2] Zhou X S, Liu C X, Yu L M, et al.Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: a review[J]. J. Mater. Sci. Technol., 2015, 31: 235
[3] Samaras M.Multiscale modelling: The role of helium in iron[J]. Mater. Today, 2009, 12: 46
[4] Bloom E E.The challenge of developing structural materials for fusion power systems [J]. J. Nucl. Mater., 1998, 258-263: 7
[5] Feng Y C, Xing W W, Wang S L, et al.First-principles study of hydrogen behaviors at oxide/ferrite interface in ODS steels[J]. Acta Metall. Sin., 2018, 54: 325(冯宇超, 邢炜伟, 王寿龙等. ODS钢中氧化物/铁素体界面捕氢行为的第一原理研究[J]. 金属学报, 2018, 54: 325)
[6] Yang L, Gao F, Kurtz R J, et al.Atomistic simulations of helium clustering and grain boundary reconstruction in alpha-iron[J]. Acta Mater., 2015, 82: 275
[7] Zhang L, Fu C C, Hayward E, et al.Properties of He clustering in α-Fe grain boundaries[J]. J. Nucl. Mater., 2015, 459: 247
[8] Wang Y X, Xu Q, Yoshiie T, et al.Effects of edge dislocations on interstitial helium and helium cluster behavior in α-Fe[J]. J. Nucl. Mater., 2008, 376: 133
[9] Martínez E, Schwen D, Caro A.Helium segregation to screw and edge dislocations in α-iron and their yield strength[J]. Acta Mater., 2015, 84: 208
[10] Ono K, Miyamoto M, Arakawa K, et al.Effects of precipitated helium, deuterium or alloy elements on glissile motion of dislocation loops in Fe-9Cr-2W ferritic alloy[J]. J. Nucl. Mater., 2014, 455: 162
[11] Yamamoto T, Odette G R, Miao P, et al. Helium effects on microstructural evolution in tempered martensitic steels: In situ helium implanter studies in HFIR [J]. J. Nucl. Mater., 2009, 386-388: 338
[12] Xu Q, Yamasaki H, Sugiura Y, et al.Effects of interactions between dislocations and/or vacancies and He atoms on mechanical property changes in Ni[J]. Mater. Sci. Eng., 2013, A586: 231
[13] Xu Q, Sugiura Y, Pan X Q, et al.Effects of dislocation-trapped helium on mechanical properties of Fe[J]. Mater. Sci. Eng., 2014, A612: 41
[14] Wei Y P, Liu P P, Zhu Y M, et al.Evaluation of irradiation hardening and microstructure evolution under the synergistic interaction of He and subsequent Fe ions irradiation in CLAM steel[J]. J. Alloys Compd., 2016, 676: 481
[15] Chen J, Jung P, Hoffelner W, et al.Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress[J]. Acta Mater., 2008, 56: 250
[16] Galindo-Nava E I, Basha B I Y, Rivera-Díaz-del-Castillo P E J. Hydrogen transport in metals: Integration of permeation, thermal desorption and degassing[J]. J. Mater. Sci. Technol., 2017, 33: 1433
[17] Li Q, Parish C M, Powers K A, et al.Helium solubility and bubble formation in a nanostructured ferritic alloy[J]. J. Nucl. Mater., 2014, 445: 165
[18] Shi J Y, Peng L, Ye M Y, et al.Molecular dynamics study: Effects of He bubble and Cr precipitate on tensile deformation of grain boundaries in α-Fe[J]. IEEE Trans. Plasma Sci., 2017, 45: 289
[19] Tschopp M A, Gao F, Yang L, et al.Binding energetics of substitutional and interstitial helium and di-helium defects with grain boundary structure in α-Fe[J]. J. Appl. Phys., 2014, 115: 033503
[20] Osetsky Y N, Stoller R E.Atomic-scale mechanisms of helium bubble hardening in iron[J]. J. Nucl. Mater., 2015, 465: 448
[21] Yang L, Gao F, Kurtz R J, et al.Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study[J]. Acta Mater., 2015, 97: 86
[22] Morishita K, Sugano R, Wirth B D, et al.Thermal stability of helium-vacancy clusters in iron[J]. Nucl. Instrum. Methods Phys. Res., 2003, 202B: 76
[23] Fu C C, Willaime F.Ab initio study of helium in α-Fe: Dissolution, migration, and clustering with vacancies[J]. Phys. Rev., 2005, 72B: 064117
[24] Stewart D, Osetskiy Y, Stoller R.Atomistic studies of formation and diffusion of helium clusters and bubbles in BCC iron[J]. J. Nucl. Mater., 2011, 417: 1110
[25] Jia X, Dai Y, Victoria M.The impact of irradiation temperature on the microstructure of F82H martensitic/ferritic steel irradiated in a proton and neutron mixed spectrum[J]. J. Nucl. Mater., 2002, 305: 1
[26] Li X C, Shu X L, Tao P, et al.Molecular dynamics simulation of helium cluster diffusion and bubble formation in bulk tungsten[J]. J. Nucl. Mater., 2014, 455: 544
[27] Ono K, Arakawa K, Hojou K.Formation and migration of helium bubbles in Fe and Fe-9Cr ferritic alloy [J].J. Nucl. Mater., 2002, 307-311: 1507
[28] Yang L, Zu X T, Gao F, et al.Dynamic interactions of helium-vacancy clusters with edge dislocations in α-Fe[J]. Physica, 2010, 405B: 1754
[29] Yang L, Zhu Z Q, Peng S M, et al.Effects of temperature on the interactions of helium-vacancy clusters with gliding edge dislocations in α-Fe[J]. J. Nucl. Mater., 2013, 441: 6
[30] Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117: 1
[31] Stukowski A.Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool[J]. Modell. Simul. Mater. Sci. Eng., 2009, 18: 015012
[32] Stukowski A, Albe K.Dislocation detection algorithm for atomistic simulations[J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 025016
[33] Yang L, Deng H Q, Gao F, et al.Atomistic studies of nucleation of He clusters and bubbles in bcc iron[J]. Nucl. Instrum. Methods Phys. Res., 2013, 303B: 68
[34] Prokhodtseva A, Décamps B, Sch?ublin R.Comparison between bulk and thin foil ion irradiation of ultra high purity Fe[J]. J. Nucl. Mater., 2013, 442(Suppl.1-3): S786
[35] Heinisch H L, Gao F, Kurtz R J, et al.Interaction of helium atoms with edge dislocations in α-Fe[J]. J. Nucl. Mater., 2006, 351: 141
[36] Wirth B D, Odette G R, Maroudas D, et al.Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron[J]. J. Nucl. Mater., 2000, 276: 33
[37] Marian J, Wirth B D, Perlado J M.Mechanism of formation and growth of <100> interstitial loops in ferritic materials[J]. Phys. Rev. Lett., 2002, 88: 255507
[38] Wang J, Yu L M, Huang Y, et al.Micromechanics mechanism of α-Fe with different types of edge dislocations under radiation damage[J]. Mater. Lett., 2018, 210: 325
[39] Ding M S, Du J P, Wan L, et al.Radiation-induced helium nanobubbles enhance ductility in submicron-sized single-crystalline copper[J]. Nano Lett., 2016, 16: 4118
[40] Hale L M, Zimmerman J A, Wong B M.Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys[J]. J. Chem. Phys., 2016, 144: 194705
[41] Carrington W, Hale K F, McLean D. Arrangement of dislocations in iron[J]. Proc. Roy. Soc., 1960, 259A: 203
[42] Ohr S M, Beshers D N.Crystallography of dislocation networks in annealed iron[J]. Philos. Mag., 1963, 8A: 1343
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[6] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[7] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[8] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[11] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[12] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!