Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (2): 250-256    DOI: 10.11900/0412.1961.2020.00527
Research paper Current Issue | Archive | Adv Search |
Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations
LI Haiyong1, LI Saiyi1,2()
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410012, China
Cite this article: 

LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations. Acta Metall Sin, 2022, 58(2): 250-256.

Download:  HTML  PDF(2069KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The migration behavior of <111> symmetric tilt grain boundaries (GBs) having different misorientation angles was simulated using a molecular dynamics synthetic driving force method. The effect of temperature on the migration behavior was investigated in the temperature range of 300-800 K. The results demonstrated that the temperature dependencies of GB migration varied with the misorientation. GBs with a misorientation of 8.61°-21.79° exhibited antithermally activated migration, whereas those with a misorientation of 38.21°-60° exhibited thermally activated migration. For the GBs having a misorientation of 27.80°-32.20°, there was an apparent transition from thermally activated migration at low temperature to antithermally activated migration at high temperature. The mobility of the GBs having a misorientation of 8.61°-21.79° was much higher than that of other GBs, but the differences between them decreased with increasing temperature. The GB structures at different temperatures can be well described using the structural unit model. GBs with structures consisting of similar types of structural units exhibit comparable temperature dependencies in their mobility. The complex temperature dependencies of migration behavior shown by some GBs appear to be related to structural changes featured by the transformation between variants belonging to the same type of structural units.

Key words:  grain boundary      mobility      temperature dependency      molecular dynamics     
Received:  28 December 2020     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51271204);High Performance Computing Center of Central South University
About author:  LI Saiyi, professor, Tel: (0731)88876621, E-mail: saiyi@csu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00527     OR     https://www.ams.org.cn/EN/Y2022/V58/I2/250

θ / (°)Grain boundary planeStructural unit description
8.61(11 12¯ 1)1/(12 11¯1¯)2133|9(A)B1.9(A)B1.9(A)B1|
10.42(9 10¯ 1)1/(10 9¯1¯)291|7(A)B2.7(A)B2.7(A)B2|
13.17(7 8¯ 1)1/(8 7¯1¯)257|5(A)B1|
17.90(5 6¯ 1)1/(6 5¯1¯)231|AAAB1.AAAB1.AAAB1|
21.79(4 5¯ 1)1/(5 4¯1¯)221|AAB2|
27.80(3 4¯ 1)1/(4 3¯1¯)213|AB2.AB2.AB2|
32.20(5 7¯ 2)1/(7 5¯2¯)239|AB2B2|
38.21(2 3¯ 1)1/(3 2¯1¯)27|B2.B2.B2|
43.57(5 8¯ 3)1/(8 5¯3¯)249|B2B2C.B2B2C.B2B2C|
46.83(3 5¯ 2)1/(5 3¯2¯)219|B2C.B2C.B2C|
50.57(4 7¯ 3)1/(7 4¯3¯)237|B2CC.B2CC.B2CC|
53.99(6 11¯ 5)1/(11 6¯5¯)291|B24(C).B24(C).B24(C)|
60.00(1 2¯ 1)1/(2 1¯1¯)23|C|
Table 1  Crystallography and structural unit description of Al <111> STGBs
Fig.1  Schematic of the bicrystal model for grain boundary (GB) mobility computation
Fig.2  Displacement (d) vs time (t) curves during migration at different temperatures (driving force p = 0.01 eV/atom) for selected GBs at θ = 13.17° (a) and θ = 46.83° (b)
Fig.3  Variation of migration velocity (v) with driving force at different temperatures for selected GBs
Fig.4  Mobility vs temperature curves for <111> STGBs with different misorientations (T / Tm─homologous temperatures, T—temperature, Tm—melting point)
Fig.5  Structures of GBs with different misorientation angles at 0 K, shown by atoms that are projected along <111> (The upper and lower figures are colored according to their location of layers and centro-symmetry parameter (CSP) values, respectively)
Fig.6  Structures of the θ = 13.17° GB at different temperatures, shown by atoms that are projected along <111> and colored according to their CSP values
Fig.7  Structures of the θ = 27.80° GB during migration at T = 600 K with p = 0.0125 eV/atom, shown by atoms that are projected along <111> and colored according to their CSP values
1 Gottstein G , Shvindlerman L S . Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications [M]. 2nd Ed., Boca Raton: Taylor & Francis, 2010: 145
2 Winning M , Gottstein G , Shvindlerman L S . Stress induced grain boundary motion [J]. Acta Mater., 2001, 49: 211
3 Winning M , Rollett A D , Gottstein G , et al . Mobility of low-angle grain boundaries in pure metals [J]. Philos. Mag., 2010, 90: 3107
4 Shivindlerman L S , Gottstein G , Molodov D A . Grain boundary motion in pure metals: Effect of interaction between adsorbed atoms at moving boundaries [J]. Phys. Status Solidi, 1997, 160a: 419
5 Molodov D A , Czubayko U , Gottstein G , et al . Mobility of <111> tilt grain boundaries in the vicinity of the special misorientation = 7 in bicrystals of pure aluminium [J]. Scr. Metall. Mater., 1995, 32: 529
6 Upmanyu M , Srolovitz D J , Shvindlerman L S , et al . Misorientation dependence of intrinsic grain boundary mobility: Simulation and experiment [J]. Acta Mater., 1999, 47: 3901
7 Kopetsky C V , Shvindlerman L S , Sursaeva V G . Effect of athermal motion of grain boundaries [J]. Scr. Metall., 1978, 12: 953
8 Rheinheimer W , Hoffmann M J . Non-Arrhenius behavior of grain growth in strontium titanate: New evidence for a structural transition of grain boundaries [J]. Scr. Mater., 2015, 101: 68
9 Homer E R , Holm E A , Foiles S M , et al . Trends in grain boundary mobility: Survey of motion mechanisms [J]. JOM, 2014, 66: 114
10 Priedeman J L , Olmsted D L , Homer E R . The role of crystallography and the mechanisms associated with migration of incoherent twin grain boundaries [J]. Acta Mater., 2017, 131: 553
11 Humberson J , Holm E A . Anti-thermal mobility in the Σ3 [111] 60° {11 8 5} grain boundary in nickel: Mechanism and computational considerations [J]. Scr. Mater., 2017, 130: 1
12 Bair J L , Homer E R . Antithermal mobility in 7 and 9 grain boundaries caused by stick-slip stagnation of ordered atomic motions about coincidence site lattice atoms [J]. Acta Mater., 2019, 162: 10
13 Yu T T , Yang S , Deng C . Survey of grain boundary migration and thermal behavior in Ni at low homologous temperatures [J]. Acta Mater., 2019, 177: 151
14 Han J , Thomas S L , Srolovitz D J . Grain-boundary kinetics: A unified approach [J]. Prog. Mater. Sci., 2018, 98: 386
15 Homer E R , Patala S , Priedeman J L . Grain boundary plane orientation fundamental zones and structure-property relationships [J]. Sci. Rep., 2015, 5: 15476.
16 Olmsted D L , Holm E A , Foiles S M . Survey of computed grain boundary properties in face-centered cubic metals—II: Grain boundary mobility [J]. Acta Mater., 2009, 57: 3704
17 Yang L , Lai C M , Li S Y . A survey of the crystallography-dependency of twist grain boundary mobility in Al based on atomistic simulations [J]. Mater. Lett., 2020, 263: 127293.
18 Yang L , Lai C M , Li S Y . Statistical analysis of grain boundary mobility in Al simulated using a modified synthetic driving force molecular dynamics method [J]. Mater. Lett., 2018, 227: 90
19 Beck P A , Sperry P R , Hu H . The orientation dependence of the rate of grain boundary migration [J]. J. Appl. Phys., 1950, 21: 420
20 Lücke K , Rixen R , Senna M . Formation of recrystallization textures in rolled aluminum single crystals [J]. Acta Metall., 1976, 24: 103
21 Plimpton S . Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
22 Liu X Y , Ercolessi F , Adams J B . Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy [J]. Modell. Simul. Mater. Sci. Eng., 2004, 12: 665
23 Adlakha I , Solanki K N . Structural stability and energetics of grain boundary triple junctions in face centered cubic materials [J]. Sci. Rep., 2015, 5: 8692
24 Men H , Fan Z . Molecular dynamic simulation of the atomic structure of aluminum solid-liquid interfaces [J]. Mater. Res. Express, 2014, 1: 025705
25 Tschopp M A , McDowell D L . Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminium [J]. Philos. Mag., 2007, 87: 3147
26 Janssens K G F , Olmsted D , Holm E A , et al . Computing the mobility of grain boundaries [J]. Nat. Mater., 2006, 5: 124
27 Yang L , Li S Y . A modified synthetic driving force method for molecular dynamics simulation of grain boundary migration [J]. Acta Mater., 2015, 100: 107
28 Stukowski A . Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool [J]. Modell. Simul. Mater. Sci. Eng., 2009, 18: 015012
29 Sutton A P , Vitek V . On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries [J]. Philos. Trans. R. Soc. London, 1983, 309A: 1
30 Zhou J , Mohles V . Towards realistic molecular dynamics simulations of grain boundary mobility [J]. Acta Mater., 2011, 59: 5997
31 Holm E A , Foiles S M , Homer E R , et al . Comment on “Toward realistic molecular dynamics simulations of grain boundary mobility” by Zhou and Mohles [J]. Scr. Mater., 2012, 66: 714
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[7] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[8] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[9] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[10] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[11] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[12] ZHAO Li-Dong, WANG Sining, XIAO Yu. Carrier Mobility Optimization in Thermoelectric Materials[J]. 金属学报, 2021, 57(9): 1171-1183.
[13] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[14] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[15] SUN Jia, LI Xuexiong, ZHANG Jinhu, WANG Gang, YANG Mei, WANG Hao, XU Dongsheng. Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy[J]. 金属学报, 2020, 56(8): 1113-1122.
No Suggested Reading articles found!