Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (10): 1045-1050     DOI:
Research Articles Current Issue | Archive | Adv Search |
Study of Texture and Grain Boundary Character Distributions of IFSteels
CAO Shengquan; ZHANG Jinxu; WU Jiansheng; CHEN Jiaguang
Key Laboratory of the Ministry of Education for High Temperature Materials and Testing; Shanghai Jiaotong University; Shanghai 200030
Cite this article: 

CAO Shengquan; ZHANG Jinxu; WU Jiansheng; CHEN Jiaguang. Study of Texture and Grain Boundary Character Distributions of IFSteels. Acta Metall Sin, 2004, 40(10): 1045-1050 .

Download:  PDF(69136KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The batch annealing and continuous annealing of IF steel sheets have been simulated. Texture, grain boundary character distributions (GBCD) and their relations with secondary working embrittlement (SWE) were investigated by electron back-scatter diffraction (EBSD).The results show that the two kinds of IF sheets are great difference in texture and grain boundary character distributions: (1) Continuous annealing IF sheets have a strong 111 recrystallization texture composed , while the batch annealing IF sheets is composed of weak texture ; (2) Large numberCSL boundaries produced in continuous annealing IF sheets, while in batch annealing IF sheets CSL boundaries obviously occurred; (3) Low energy boundaries distributed uniformly in continuous annealing IF sheets, while in batch annealing IF sheets low energy boundaries are accumulative, and random boundaries distribute around the low energy boundaries to form a thick network, which leads to the SWE.
Key words:  IF steel      texture      grain boundary character distribution      
Received:  12 November 2003     
ZTFLH:  TG113.1  
  TG142  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I10/1045

[1] He C S, Zhang Y D, Wang Y N. Scr Mater, 2003; 48: 737
[2] Lee S H, Lee D N. Mater Sci Eng, 1998; A249: 84
[3] Pero-Sanz J, Ruiz-Delgado M, Martinez V. Mater Char-act, 1999; 43: 303
[4] Chu Y Z, Pan Y. Spec Steel, 2001; 1: 36(初元璋,潘岩.特殊钢,2000;1:36)
[5] Tadao W, Sadahiro T. Acta Mater, 1999; 15: 4171
[6] Bystrzycki J, Varin R A, Nowell M, Kurzydlowski K J.Intermetallics, 2000; 8: 1049
[7] Watanabe T. Mater Forum, 1988; 11: 284
[8] Don J, Majumdar S. Acta Metall, 1986; 34: 961
[9] Hayakawa Y, Szpunar J A. Acta Mater, 1997; 3: 1285
[10] Palumbo G, Erb U, Aust K T. Mater Sci Eng, 1994; A37:27
[11] Brochu M, Yokota T, Satoh S. ISIJ Int, 1997; 9: 872
[12] Adachi Y, Seki A. J Inst Met, 1998; 8: 754
[13] Mao W M, Zhao X B. The Metallic Recrystallization andGrain Growth. Beijing: Metallurgical Industry Press,1994: 15(毛卫民,赵新兵.金属的再结晶与晶粒长大.北京:冶金工业出版社,1994:15)
[14] Wang G, Sun J L, Wang F, Liang Z D. J Northeastern Univ, 1998; 4: 381(王刚,孙建伦,王福,梁志德.东北大学学报,1998;4:381)
[15] Brandon D G. Acta Metall, 1966; 14: 1479
[16] Lehockey E M, Palumbo G, Lin P. Scr Mater, 1998; 3:353
[17] Palumbo G, King P J, Aust K T. Scr Mater, 1991; 25:1775
[18] Chen J G, Li Z. Chin Mach Eng, 2001; 3: 334(陈家光,李忠.中国机械工程,2001;3:334)
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[4] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[7] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[8] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[9] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[10] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[11] DU Zijie, LI Wenyuan, LIU Jianrong, SUO Hongbo, WANG Qingjiang. Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process[J]. 金属学报, 2020, 56(12): 1667-1680.
[12] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[13] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[14] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[15] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
No Suggested Reading articles found!