Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (9): 950-958    DOI:
Current Issue | Archive | Adv Search |
THE RELATIONSHIP BETWEEN FRACTURE TOUGHNESS AND NOTCH TOUGHNESS, TENSILE DUCTILITIES IN LATH MARTENSITE STEEL
LIANG Yilong; LEI Min; ZHONG Shuhui; JIANG Shan (Guizhou University of Technology; Guiyang 550003)Correspondent: LIANG Yilong; associate professor; Tel. (0851)4818011; Fax: (0851)4818381
Cite this article: 

LIANG Yilong; LEI Min; ZHONG Shuhui; JIANG Shan (Guizhou University of Technology; Guiyang 550003)Correspondent: LIANG Yilong; associate professor; Tel. (0851)4818011; Fax: (0851)4818381. THE RELATIONSHIP BETWEEN FRACTURE TOUGHNESS AND NOTCH TOUGHNESS, TENSILE DUCTILITIES IN LATH MARTENSITE STEEL. Acta Metall Sin, 1998, 34(9): 950-958.

Download:  PDF(3465KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The relationship between fracture toughness and notch toughness, tensile ductilities in lath martensite steel has been investigated. The experimental results show that fracture toughness is controlled by microplastisity in the small local region (1 to 2 times the crack tip opening displacements c at critical) ahead of the crack tip, whereas blunt notch toughness, tensile ductility is controlled by austenite grain size (dγ) or martensite packet diamiter (dp). The characteristic distance corresponds to the extent of effective deformed region (2c) resulted from blunting of crack tip. The relationship between fracture toughness and notch toughness 、tensile ductility depends on the relative size of effective influence region (2c) and austenite grain. When 2c> (1 - 2dγ), the fracture toughness coincides with notch toughness, tensile ductility.
Key words:  lath martensite steel      austenite grain size      fracture toughness      notch toughness      tensile ductility     
Received:  18 September 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I9/950

1 Zackay V F, Parker E R, Goolsby R D, Wood W E. NaturePhys Sci, 1972; 236: 108
2 Rao B V N, Thomas G Metall Trans, 1980; 11A: 441
3 Youngblood J L;Raghavan M. Metall Trans,1977; 8A: 1439
4 石德珂.熊漪.西安交通大学学报,1989;23(Sup2):194(Shi D K,Xiong Y. J Xian Jiaotong Univ, 1989;23(Sup2):194)
5 Lai G Y, Wood W E, Clark R A, Zackay V F, Parker E R. Metall Trans, 1974; 5: 1663
6 Ritchie R O; Francis B, Server W L. Metall Trans,1976 7A: 831
7 Ritchie R O, Horn R M. Metall Trans, 1978; 9A: 331
8 Lee S, Majno L, Asaro R J. Metall Trans, 1985; 16A: 1633
9 邓增杰,周敬恩.工程材料的断裂与疲劳北京:机械工业出版社,1995:32,22(Deng Z J,Zhou J E. Fracture and Fatigue of Engineering Materials. Beijing: Chinese Press of Mechanical Industry; 1995: 32,22)
10 Mackenzie A C, Hancock J W; Brown D K. Eng FracMech, 1977 9: 167
11 梁益龙,雷,谢源章,刘其斌,张德恩.理化检验(物理分册)1993; 29(10):11(Liang Y L, Lei M, Xie Y Z; Liu Q B, Zhang D E. Phys Test Chem Anal, Part A: Phys Test. 1993; 29: 11)
12 Sarikkaya M, Jhingan A K, Thomas G. Metall Trans, 1983; 14A: 1121
13 McMeeking R M. J Mech Phys Solids, 1977 25: 357
14 林吉忠,刘淑华.金属材料的断裂与疲劳北京:中国铁道出版社,1989:156(Lin J Z,Liu SH. Fracture and Fatigue of Metal Materials. Beijing: Chinese Press of Railway, 1989:156)
15 刘禹门.机械工程学报,1985; 21:27(Liu Y M.Chinese Journal of Mechanical Engineering , 1985; 21: 27)
16 Cao Weidi, Lu Xiaoping. Metall Trans, 1987 18A: 1569
17 Handerhan K J,Garrison W M.Metall Trans,1988;19A:2989
18 McDarmaid D S. Met Technol, 1980; 7: 372
[1] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[2] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[3] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[4] Yizhe LI, Baoming GONG, Xiuguo LIU, Dongpo WANG, Caiyan DENG. Out-of-Plane Constraint Effect on the Fracture Toughness of Single Edge Notch Tension Specimens[J]. 金属学报, 2018, 54(12): 1785-1791.
[5] Xiangli FENG,Lei WANG,Yang LIU. STUDY ON MICROSTRUCTURE AND DYNAMIC FRACTURE BEHAVIOR OF Q460 STEEL WELDING JOINTS[J]. 金属学报, 2016, 52(7): 787-796.
[6] Yong SHEN,Jian XU. PREPARATION AND MECHANICAL PROPERTIES OF Zr46.9Cu45.5Al5.6Y2.0 IN SITU BMG COMPOSITES WITH B2-CuZr PHASE[J]. 金属学报, 2015, 51(11): 1407-1415.
[7] ZHU Zhendong, XU Jian. Cu56Hf27Ti17 BULK METALLIC GLASS WITH HIGH FRACTURE TOUGHNESS[J]. 金属学报, 2013, 49(8): 969-975.
[8] BI Zongyue, YANG Jun, NIU Jing, ZHANG Jianxun. FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH-STRENGTH PIPELINE STEEL[J]. 金属学报, 2013, 49(5): 576-582.
[9] SUN Qian, WANG Xiaonan, ZHANG Shunhu, DU Linxiu, DI Hongshuang. EFFECT OF MICROSTRUCTURE ON FRACTURE TOUGHNESS OF NEW TYPE HOT—ROLLED NANO—SCALE PRECIPITATION STRENGTHENING STEEL[J]. 金属学报, 2013, 49(12): 1501-1507.
[10] JIA Xiaojiao ZHANG Jun SU Haijun SONG Kan LIU Lin FU Hengzhi. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Al2O3–BASIC EUTECTIC IN SITU COMPOSITES DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE REMELTING[J]. 金属学报, 2012, 48(12): 1479-1486.
[11] YOU Yang WANG Xuemin SHANG Chengjia. INFLUENCE OF AUSTENITIZING TEMPERATURE ON THE MICROSTRUCTURE AND IMPACT TOUGHNESS OF A HIGH STRENGTH LOW ALLOY HSLA100 STEEL[J]. 金属学报, 2012, 48(11): 1290-1298.
[12] MA Yue PAN Tao JIANG Bo CUI Yinhui SU Hang PENG Yun . STUDY OF THE EFFECT OF SULFUR CONTENTS ON FRACTURE TOUGHNESS OF RAILWAY WHEEL STEELS FOR HIGH SPEED TRAIN[J]. 金属学报, 2011, 47(8): 978-983.
[13] ZHANG Xin ZHANG Jinyu LIU Gang ZHANG Guojun SUN Jun. LENGTH SCALE DEPENDENT DUCTILITY AND FRACTURE BEHAVIOR OF Cu/Nb NANOSTRUCTURED METALLIC MULTILAYERS[J]. 金属学报, 2011, 47(2): 246-250.
[14] YIN Yunyang YANG Wangyue LI Longfei SUN Zuqing WANG Xitao. MICROSTRUCTURE CONTROL OF HOT ROLLED TRIP STEEL BASED ON DYNAMIC TRANSFORMATION OF UNDERCOOLED AUSTENITE
I. Prior Austenite Grain Size
[J]. 金属学报, 2010, 46(2): 155-160.
[15] XU Zejian; LI Yulong; LI Na; LIU Yuanyong. EFFECT OF LOADING RATE ON MODE I DYNAMIC FRACTURE TOUGHNESS OF HIGH STRENGTH STEELS 40Cr AND 30CrMnSiNi2A[J]. 金属学报, 2006, 42(9): 965-970 .
No Suggested Reading articles found!