Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1290-1298    DOI: 10.3724/SP.J.1037.2012.00305
Current Issue | Archive | Adv Search |
INFLUENCE OF AUSTENITIZING TEMPERATURE ON THE MICROSTRUCTURE AND IMPACT TOUGHNESS OF A HIGH STRENGTH LOW ALLOY HSLA100 STEEL
YOU Yang, WANG Xuemin, SHANG Chengjia
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

YOU Yang WANG Xuemin SHANG Chengjia. INFLUENCE OF AUSTENITIZING TEMPERATURE ON THE MICROSTRUCTURE AND IMPACT TOUGHNESS OF A HIGH STRENGTH LOW ALLOY HSLA100 STEEL. Acta Metall Sin, 2012, 48(11): 1290-1298.

Download:  PDF(1262KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of austenitizing temperature on the microstructures and -20 ℃ impact toughness of HSLA100 steel was investigated by Gleeble-3500 thermal simulator. Its microstructures were observed by SEM and EBSD, and the relevant transformation kinetics was also analyzed by means of dilatometer. The results show that the microstructure of HSLA100 steel changes gradually from granular to lath bainite with increasing austenitizing temperature. The highest impact toughness of samples was achieved at austenitizing temperature of 1000 ℃, in which martensite-austenite (M/A) islands are finer and dispersed and the density of high angle boundaries is maximum. M/A islands, however, become coarser and this density lowers below 1000 ℃, beyond 1000 ℃, these islands are refined, being accompanied by a dramatic decrease of this density of high angle boundaries. Kinetics analysis indicates that with increasing austenitizing temperature, the transformation start temperature decreases but the transformation rate increases. Both lower start temperature and faster rate would facilitate M/A islands refining. All the transformation occurring in samples might be divided into two stages: bainite and martensite stages. The highest transformed fraction of bainite is achieved in the bainite stage at about 1000 ℃, resulting in the best impact toughness of HSLA100 steel. The crystallographic analysis of the well refined M/A islands at 1000 ℃ and 1300 ℃ shows that major high angle boundaries occur prior at the boundaries between different Bain groups belong to the same crystallographic group set to at austenite boundaries when covariance transformation occurring. When over-increasing austenitizing temperature, the covariance transformation products in coarser austenite grains are dominated by only one Bain group belong to the crystallographic group set, leading to the density of high angle boundaries and thus the impact toughness of HSLA100 steel decreasing.

Key words:  HSLA100 steel      austenite grain size      phase transformation      toughness      crystallographic packet     
Received:  25 May 2012     
ZTFLH:  TG142  
Fund: 

Supported by National Basic Research Program of China (No. 2010CB630801) and High Technology Research and Development Program of China (No.2008AA03Z501)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00305     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1290


[1] Hatano H, Kawano H, Okano S. Kobe Steel Technol Rep, 2004; 54(2): 105

[2] Amano K, Kawabata F, Kubo T. Kawasaki Steel Technol Rep, 1999; 41: 48

[3] Yao L D, Wang P Y, Wang W L. Wide Heavy Plate, 2002; (2): 7

(姚连登, 王培玉, 王文亮. 宽厚板, 2002; (2): 7)

[4] Suzuki S, Ichimiya K, Akita T. JFE Technol Rep, 2005; 5: 24

[5] Nie Y, Dong W L, Zhao Y T, Shang C J, Hou H X, He X L. J Univ Sci Technol Beijing, 2006; 28: 8

(聂燚,  董文龙, 赵运堂, 尚成嘉, 侯华兴, 贺信莱. 北京科技大学学报, 2006; 28: 8)

[6] Shang C J, Yang S W, Wang X M, He X L, Liu Z Q, Chen Q P. J Univ Sci Technol Beijing, 2002; 24: 2

(尚成嘉, 杨善武, 王学敏, 贺信莱, 刘振清, 陈庆平. 北京科技大学学报, 2002; 24: 2)

[7] Otani K, Hattori K, Muraoka H, Kawazoe H, Tsuruta S. Nippon Steel Technol Rep, 1993; 58: 292

[8] Hase K, Hoshino T, Amano K. Kawasaki Steel Technol Rep, 2002; 47: 35

[9] Zhang W, Wu X C, Min Y A. Trans Mater Heat Treat, 2008; 29: 78

(张伟, 吴晓春, 闵永安. 材料热处理学报, 2008; 29: 78)

[10] Yang H S, Bhadeshia H K D H. Scr Mater, 2009; 60: 493

[11] Shang C J, Yang S W, Wang X M, Hou H X, Yu G L, Wang W Z. Iron Steel, 2005; 40(4): 57

(尚成嘉, 杨善武, 王学敏, 侯华兴, 于功利, 王文仲. 钢铁, 2005; 40(4): 57)

[12] Shang C J, Wang X M, Yang S W, He X L, Wu H B. Acta Metall Sin, 2003; 39: 1019

(尚成嘉, 王学敏, 杨善武, 贺信莱, 武会宾. 金属学报, 2003; 39: 1019)

[13] Davis C L, King J E. Metall Mater Trans, 1994; 25A: 563

[14] Li Y and Baker T N. Mater Sci Technol, 2010; 26: 1029

[15] Li Y, Crowther D N, Green M J W, Mitchell P S, Baker T N. ISIJ Int, 2001; 41: 46

[16] Sungtak L, Byung C K, Dongil K. Metall Mater Trans, 1993; 24A: 1133

[17] Gourgues A F, Flower H M, Lindley T C. Mater Sci Technol, 2000; 16: 26

[18] Lambert-Perlade A, Gourgues A F, Besson J, Sturel T, Pineau A. Metall Mater Trans, 2004; 35A: 1039

[19] Miao C L, Shang C J, Wang X M, Zhang L F. Acta Metall Sin, 2010; 46: 541

(缪成亮, 尚成嘉, 王学敏, 张龙飞. 金属学报, 2010; 46: 541)

[20] Guo Z, Lee C S, Morris JW. Acta Mater, 2004; 52: 5511

[21] You Y, Shang C J, Chen L, Subramanian S. Mater Sci Eng, 2012; A546: 111

[22] Xu Z Y. Phase Change Principle. Beijing: Science Press, 2000: 412

(徐祖耀. 相变原理. 北京: 科学出版社, 2000: 412)

[23] Xu Z Y, Liu S K. Bainite Transformation and Bainite. Beijing: Science Press, 1991: 85

(徐祖耀, 刘世楷. 贝氏体相变与贝氏体. 北京: 科学出版社, 1991: 85)

[24] Chang L C. Mater Sci Eng, 2004; A368: 175

[25] Quidort D, Brchet Y. ISIJ Int, 2002; 42: 1010

[26] Jones S J, Bhadeshia H K D H. Acta Mater, 1997; 45: 2911

[27] Yu Y N. The Basis of Materials Science. Beijing: Higher Education Press, 2008: 34

(余永宁. 材料科学基础. 北京: 高等教育出版社, 2008: 34)

[28] Xu Z Q. Martensitic Transformation and Martensite. Beijing: Science Press, 1980: 41

(徐祖耀. 马氏体相变与马氏体. 北京: 科学出版社, 1980: 41)

[29] Hiromoto K, Rintaro U, Nobuhiro T, Yoritoshi M. Acta Mater, 2006; 54: 1279

[30] Pancholi V, Krishnan M, Samajdar I S, Yadav V, Ballal N B. Acta Mater, 2008; 56: 2037

[31] Furuhara T, Takayama N, Miyamoto G. Mater Sci Forum, 2010; 638: 3044


[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[4] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[9] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[10] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[11] ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. 金属学报, 2022, 58(12): 1557-1569.
[12] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[13] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[14] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[15] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
No Suggested Reading articles found!