Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (9): 959-965    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF POTENTIAL PERTURBATION POLARIZATION ON THE STRESS CORROSION CRACKING OF 1Cr18Ni9Ti STAINLESS STEEL
NIU Lin; CAO Chunan; LIN Haichao (State Key Laboratary for Corrosion and Protection; Institute of Corrosion and Protection of Metals; The Chinese Academy of Sciences; Shenyang 110015)Correspondent: NIU Lin; Tel: (024)23915893; Fax: (094)23894149; E-mail: lin.h.c@icpm.syb.ac.cn
Cite this article: 

NIU Lin; CAO Chunan; LIN Haichao (State Key Laboratary for Corrosion and Protection; Institute of Corrosion and Protection of Metals; The Chinese Academy of Sciences; Shenyang 110015)Correspondent: NIU Lin; Tel: (024)23915893; Fax: (094)23894149; E-mail: lin.h.c@icpm.syb.ac.cn. EFFECT OF POTENTIAL PERTURBATION POLARIZATION ON THE STRESS CORROSION CRACKING OF 1Cr18Ni9Ti STAINLESS STEEL. Acta Metall Sin, 1998, 34(9): 959-965.

Download:  PDF(1601KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The SCC susceptibility of 1Cr18Ni9Ti austenitic stainless steel in 0.75mol·L-1HCl +0.25mol·L-1NaCl solution has been studied by slow strain rate tests(SSRT) and SEM. During the slow rate tensile process, the specimen was polarized with different potential perturbation modes such as potentiostatic, cyclic potential scan and cyclic potential step methods. The results indicated that potential scan rate and step frequency played an essential role in the initiation and propagation of crack. Potential step at high frequency led to much higher cracking susceptibility than potential scan within the same potential ranges.
Key words:  1Cr18Ni9Ti stainless steel      stress corrosion cracking      potential perturbation      polarization     
Received:  18 September 1998     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I9/959

1 Hoar T P, Hines J G Corrosion, 1963; 19: 331t
2 Hehemann R F. Metall Trans A, 1985; 16A: 1909
3 Haruyama S, Asawa S. Corros Sci, 1973;13:395
4 Tanno K, Yashiro H, Kawamura Y, Umegai K, Kumagai N. Corrosion, 1993; 49: 319
5 Maier I, Galvele J R. Corrosion, 1980; 36: 309
6 Congleton J, Yang W Corros Sci, 1995; 37: 429
7 Manfredi C, Maier I A, Galvele J R. CorrosSci, 1987; 27: 887
8 Parkins R N. Corros Sci, 1980; 20: 147
9 Magniu T, Chieragatti R, Oltra R. Acta Metall Mater, 1990; 38: 1313
10 KanfmanM J, Fink J K. Acta Metall, 1988; 36: 2213
11 张天成,褚武扬,史训清,朱万旭,刘宝深.金属学报,1997;33:309(Zhang T C, Chu W Y, Shi X C, Zhu W X, Liu B C, Acta Metall Sin , 1997; 33: 309)
12 林昌健,冯祖德,林福龄,王发扬,谭建光,王元辉电化学,1995;1:439(Lin C J, Feng Z D, Lin F L, Wang F Y, Tan J G, Wang Y H. Electrochemistry, 1995;1: 439)
13 田昭武著.电化学研究方法北京:科学出版社,1984:201(Tian Z W. Research Method inElectrochemistry. Beijing: Science Press, 1984: 201)
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[3] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[4] Ping DENG,Chen SUN,Qunjia PENG,En-Hou HAN,Wei KE,Zhijie JIAO. Study on Irradiation Assisted Stress Corrosion Cracking of Nuclear Grade 304 Stainless Steel[J]. 金属学报, 2019, 55(3): 349-361.
[5] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
[6] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[7] Xiuling SHANG,Bo ZHANG,Wei KE. Effect of Sb-Rich Intermetallic Phase on the CorrosionResistance of Zn Alloy in Near-Neutral and Acidic Solutions[J]. 金属学报, 2017, 53(3): 351-357.
[8] Hongliang MING,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN,Mingxing SU. Microstructure and Local Properties of a Domestic Safe-End Dissimilar Metal Weld Joint by Using Hot-Wire GTAW[J]. 金属学报, 2017, 53(1): 57-69.
[9] Maocheng YAN,Shuang YANG,Jin XU,Cheng SUN,Tangqing WU,Changkun YU,Wei KE. STRESS CORROSION CRACKING OF X80 PIPELINE STEEL AT COATING DEFECT IN ACIDIC SOIL[J]. 金属学报, 2016, 52(9): 1133-1141.
[10] Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2016, 52(8): 965-972.
[11] Jiazhen WANG,Jianqiu WANG,En-Hou HAN. CORROSION BEHAVIOR OF ALLOY 800 IN NaOH AND ETA SOLUTIONS AT 300 ℃[J]. 金属学报, 2016, 52(5): 599-606.
[12] Zilong ZHANG, Shuang XIA, Wei CAO, Hui LI, Bangxin ZHOU, Qin BAI. EFFECTS OF GRAIN BOUNDARY CHARACTER ON INTERGRANULAR STRESS CORROSION CRACKING INITIATION IN 316 STAINLESS STEEL[J]. 金属学报, 2016, 52(3): 313-319.
[13] Hongchi MA, Cuiwei DU, Zhiyong LIU, Wenkui HAO, Xiaogang LI, Chao LIU. STRESS CORROSION BEHAVIORS OF E690 HIGH-STRENGTH STEEL IN SO2-POLLUTED MARINE ATMOSPHERE[J]. 金属学报, 2016, 52(3): 331-340.
[14] Shengbo CEN,Hui CHEN,Yan LIU,Yuanming MA,Ying WU. EFFECT OF CeO2 ON CORROSION BEHAVIOR OF WC-12Co COATINGS BY HIGH VELOCITY OXYGEN FUEL[J]. 金属学报, 2016, 52(11): 1441-1448.
[15] Ju KANG,Jichao LI,Zhicao FENG,Guisheng ZOU,Guoqing WANG,Aiping WU. INVESTIGATION ON MECHANICAL AND STRESS CORROSION CRACKING PROPERTIES OF WEAKNESS ZONE IN FRICTION STIR WELDED 2219-T8 Al ALLOY[J]. 金属学报, 2016, 52(1): 60-70.
No Suggested Reading articles found!