Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (2): 164-170    DOI:
Current Issue | Archive | Adv Search |
THE PREFERRED ORIENTATION, MICROSTRUCTURE AND MAGNETOSTOSTRION IN DIRECTIONALLX SOLIDIFIED TbDyFe ALLOYS
JIANG Chengbao (Department of Materials Science and Engineering; Beijing University of Aeronautics and Astronautics; Beijing 100083)ZHOU Shonseng;ZHANG Maocai;WANG Run (State Key Laboratory for Advanced Metal Materials; University of Science and Technology Beijing; Beijing 100083)
Cite this article: 

JIANG Chengbao (Department of Materials Science and Engineering; Beijing University of Aeronautics and Astronautics; Beijing 100083)ZHOU Shonseng;ZHANG Maocai;WANG Run (State Key Laboratory for Advanced Metal Materials; University of Science and Technology Beijing; Beijing 100083). THE PREFERRED ORIENTATION, MICROSTRUCTURE AND MAGNETOSTOSTRION IN DIRECTIONALLX SOLIDIFIED TbDyFe ALLOYS. Acta Metall Sin, 1998, 34(2): 164-170.

Download:  PDF(1442KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The device of zone melting directional solidification has been used to investigate the preferred orientation, microstructure and magnetostriction of Tb0.3Dy0.7(Fe, M)1.95 (M=Al,Mn, B) metallic compound. When the temperature gradient GL≈700 K/cm, the growth velocity V mm/min, the crystal grows in plannar interface, 1< V 6 mm/min, in cellular morphology; V=8 - 12 mm/min, in primary dendrite; V > 15 mm/min, in developed delldrite. As V=12 mm/min, GL≈1000 and 400 K/cm, the crystal grows in cellular morphology developed dendrite, respectively. Crystals in cellular morphology are <110> preferred orientation and poor magnetostrictive property. Crystals in primary dendrite with <112> preferred orientation, have a good performance, the maximum value of magnetostriction (A) is 0.00175. Crystals in developed dendrite with part <112> orientation have an inferior property than the former.
Key words:  directional solidification      microstructure      magnetostriction      preferred orientation     
Received:  18 February 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I2/164

1Teter J P, Clark A E.J Appl Phgs, 1987; 61: 3787
2Westwood P, Abell J S, Pitman K C.J Appl Phys, 1990; 67: 4998
3蒋成保.北京科技大学博士学位论文,1996 (Jiang C B. Doctor Thesis, Universty Science and Technology Beijing, 1996)
4Weinberg F, Chalmers B. Can J Phys, 1951; 29: 382
5安阁英,刘立新.金属科学与工艺,1985;14:55 (A G Y, Li: L X. Metal Sci Technol, 1985; 14: 55)
6Flemings M C. Solidification Processing, 1974: 58
7Jiang C B, Zhou S Z, Wang R. Acta Metall Mater to be published
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!