Please wait a minute...
Acta Metall Sin  1993, Vol. 29 Issue (3): 69-75    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF CoCrAl COATING ON OXIDATION RESISTANCE OF TiAl INTERMETALLIC COMPOUND
WANG Fuhui;LOU Hanyi;WU Weitao Corrosion Science Laboratory; Institute of Corrosion and Protection of Metals; Academia Sinica; Shenyang associate professor;Institute of Corrosion and Protection of Metals;Academia Sinica; Shenyang 110015
Cite this article: 

WANG Fuhui;LOU Hanyi;WU Weitao Corrosion Science Laboratory; Institute of Corrosion and Protection of Metals; Academia Sinica; Shenyang associate professor;Institute of Corrosion and Protection of Metals;Academia Sinica; Shenyang 110015. EFFECT OF CoCrAl COATING ON OXIDATION RESISTANCE OF TiAl INTERMETALLIC COMPOUND. Acta Metall Sin, 1993, 29(3): 69-75.

Download:  PDF(1840KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Effect of a sputtered Co-30Cr-5Al microcrystalline coating on oxidation re-sistance of TiAl intermetallic compound and oxidation behaviour of the bare TiAl compoundwere studied at 900-1000℃ in static air. The oxidation kinetics for the TiAl alloy seems toapproximately follow a linear rate law. Poor oxidation resistance of TiAl is due to the forma-tion of the mixed Al_2O_3 +TiO_2 scale which is loosely packed and easily spalled off but not ofdense and adherent unique Al_2O_3. A sputtered Co-30Cr-5Al coating, 30μm thick, can re-markably improve the oxidation resistance of TiAl owing to formation of adherentAl_2O_3 protective layer. However, many Kirkendall voids were formed between coating andsubstrate.
Key words:  CoCrAl microcrystalline coating      TiAl      high temperature oxidation      void     
Received:  18 March 1993     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1993/V29/I3/69

1 Kim Y M. J Met, 1989, 42, 24
2 Kawabata T, Kanai T, Izumi O. Acta Metall, 1985; 33: 1355
3 Subrahmanyam J. J Mater Sci, 1988; 23: 1906
4 Kung S C, Rapp R A. J Electrochem Soc, 1988; 135: 731
5 Kawabata K, Hashimoto K, Doi H, Tsujimoto T. J Jpn Inst Met, 1989; 53: 58
6 Smialek J L, Gedwill M A, Bindley P K. Sci Metall. 1990; 24: 1291
7 Kung S C. Oxid Met, 1990; 24: 217
8 Taniguchi S, Shibada T, Itoh S. Mater Trans Jpn Inst Met, 1991; 2: 151
9 Richardson F D, Jeffes J H E. J Iron Steel Inst, 1948; 160: 261
10 Rahmel A, Spencer F J. Oxid Met, 1991; 35: 53
11 沈嘉年,滕玉国,江竹海,周龙江,李铁藩.北京科技大学学报,1991;(增刊):113,624?
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[5] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[6] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[8] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[9] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[10] XIE Leipeng, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Effects of Processing on Microstructures and Properties of FGH4097 Superalloy[J]. 金属学报, 2022, 58(8): 992-1002.
[11] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[12] YANG Liang, LV Haotian, WAN Chunlei, GONG Qianming, CHEN Hao, ZHANG Chi, YANG Zhigang. Review: Mechanism of Reactive Element Effect—Oxide Pegging[J]. 金属学报, 2021, 57(2): 182-190.
[13] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[14] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[15] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
No Suggested Reading articles found!