Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (12): 1559-1566    DOI: 10.11900/0412.1961.2021.00093
Research paper Current Issue | Archive | Adv Search |
Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry
ZHANG Shaohua(), XIE Guang, DONG Jiasheng, LOU Langhong
Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry. Acta Metall Sin, 2021, 57(12): 1559-1566.

Download:  HTML  PDF(2521KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based single crystal (SX) superalloys are used for the production of blades in gas turbines and aircraft engines because of their superior mechanical performance at high temperatures. To improve the temperature capabilities of modern SX superalloys, specific refractory elements are added to the alloys. This leads to micro-segregation in alloys, requiring a complex heat treatment process to eliminate γ/γ′ eutectic. Therefore, the dissolution process of γ/γ′ eutectic must be understood. In this study, a second-generation Ni-based SX superalloy was used to investigate the effect of extended holding time at 1290oC and 1300oC on the γ′ phase dissolving temperature (Tγ) and γ/γ′ eutectic phase-melting temperature (Tγ/γ), respectively. The method involves measuring the differential heating curves of as-cast and as heat-treated samples using DSC. The results showed that Tγ′ and Tγ/γ′ increased at a holding time of 2 h. However, with an increase in the holding time, the temperature increase was not obvious. The volume fraction of γ/γ′ eutectic decreased with the extended holding at 1300oC, while the volume fraction of γ/γ′ eutectic increased after holding at 1290oC for 8 h. This abnormal phenomenon was confirmed by the metallographic experiments. The analyses showed that the increase in the eutectic volume fraction was due to the incomplete dissolution of coarse γ′ phase at the inter-dendritic region, which resulted in the diffusion of Ta element from dendrite core to the inter-dendritic region, promoting eutectic growth.

Key words:  single crystal superalloy      differential scanning calorimetry      solution heat treatment      eutectic phase transition     
Received:  01 March 2021     
ZTFLH:  TG132.3  
Fund: National Natural Science Foundation of China(51771204)
About author:  ZHANG Shaohua, associate professor, Tel: (024)23748882, E-mail: zhangshaohua@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00093     OR     https://www.ams.org.cn/EN/Y2021/V57/I12/1559

Fig.1  The temperature program for eutectic dissolution kinetics experiment
Fig.2  OM (a, c) and SEM (b, d) images of the as-cast (a, b) and heat-treatment (1310oC, 6 h) (c, d) DD414 single crystal superalloy
PositionAlCrMoCoTaWReNi
Nominal composition5.55210963Bal.
Dendritic core5.125.021.6611.404.947.693.40Bal.
Fine γ/γ′ eutectic6.523.871.619.2611.083.531.35Bal.
Coarse γ/γ′ eutectic7.402.050.867.6614.542.280.32Bal.
Table 1  Chemical compositions of dendritic core, fine γ/γ′ eutectic, and coarse γ/γ′ eutectic of as-cast alloy tested by EPMA
Fig.3  Morphologies (a-c) and distributions (eutectic colored by image software) (d-f) of the eutectics in DD414 single crystal superalloy after solution heat treatment at 1290℃ for 2 h (a, d), 6 h (b, e), and 10 h (c, f)
Fig.4  Morphologies of the eutectics in DD414 single crystal superalloy after solution heat treatment at 1300℃ for 2 h (a), 4 h (b), 6 h (c), and 10 h (d)
Fig.5  DSC curves of DD414 single crystal superalloy heated at 1290oC (a) and 1300oC (b) for different time
Fig.6  The evolutions of γ′ phase dissolving temperature (Tγ), the start and end melting temperatures of γ/γ′ eutectic phase (Tγ/γ, TEnd, γ/γ) with holding time when DD414 single crystal superalloy heated at 1290oC (a) and 1300oC (b)
Fig.7  The relationship between volume fraction of eutectic and holding time at 1290oC (a) and 1300oC (b) in DD414 single crystal superalloy
Fig.8  ln[-ln(1 - f(t))]-lnt curves of DD414 single crystal superalloy during isothermal holding process
1 Sims C T, Stoloff N S, Hagel W C. Superalloys II [M]. New York: John Wiley, 1987: 615
2 Gell M, Duhl D N, Giamei A F. The development of single crystal superalloy turbine blades [A]. Superalloys 1980 [C]. Warrendale, PA: TMS, 1980: 205
3 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
张 健, 王 莉, 王 栋等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
4 Kearsey R M, Beddoes J C, Jones P, et al. Compositional design considerations for microsegregation in single crystal superalloy systems [J]. Intermetallics, 2004, 12: 903
5 Chen J Y, Feng Q, Sun Z Q. Topologically close-packed phase promotion in a Ru-containing single crystal superalloy [J]. Scr. Mater., 2010, 63: 795
6 Wilson B C, Hickman J A, Fuchs G E. The effect of solution heat treatment on a single-crystal Ni-based superalloy [J]. JOM, 2003, 55(3): 35
7 Fuchs G E. Solution heat treatment response of a third generation single crystal Ni-base superalloy [J]. Mater. Sci. Eng., 2001, A300: 52
8 Zhang J H, Zhang Z Y, Li Y A. Investigation of the heat treatment in a single crystal nickel-base superalloy [J]. Dev. Appl. Mater., 1997, 12(1): 27
张静华, 张志亚, 李英敖. DD8单晶镍基高温合金热处理制度研究 [J]. 材料开发与应用, 1997, 12(1): 27
9 Han M, Luo Y S. Study on modified heat treatment for DD3 single crystal superalloys [J]. J. Aeronaut. Mater., 2009, 29(2): 34
韩 梅, 骆宇时. 改进DD3单晶高温合金热处理工艺的研究 [J]. 航空材料学报, 2009, 29(2): 34
10 Li J R, Liu S Z, Wang X G, et al. Development of a low-cost third generation single crystal superalloy DD9 [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs, Pennsylvania: TMS, 2016: 57
11 Su X L, Xu Q Y, Wang R N, et al. Microstructural evolution and compositional homogenization of a low Re-bearing Ni-based single crystal superalloy during through progression of heat treatment [J]. Mater. Des., 2018, 141: 296
12 Ai C, Xi L G, Wang B, et al. Investigation on solution heat treatment response and γ′ solvus temperature of a Mo-rich second generation Ni based single crystal superalloy [J]. Intermetallics, 2020, 125: 106896
13 Hu Z Q, Liu L R, Jin T. et al. Development of the Ni-base single crystal superalloys [J]. Aeroengine, 2005, 31(3): 1
胡壮麒, 刘丽荣, 金 涛等. 镍基单晶高温合金的发展 [J]. 航空发动机, 2005, 31(3): 1
14 Zhang Y B, Liu L, Huang T W, et al. Investigation on a ramp solution heat treatment for a third generation nickel-based single crystal superalloy [J]. J. Alloys Compd., 2017, 723: 922
15 Pang H T, Zhang L J, Hobbs R A, et al. Solution heat treatment optimization of fourth-generation single-crystal nickel-base superalloys [J]. Metall. Mater. Trans., 2012, 43A: 3264
16 Zhang Y B, Liu L, Huang T W, et al. Investigation on remelting solution heat treatment for nickel-based single crystal superalloys [J]. Scr. Mater., 2017, 136: 74
17 Yue X D, Li J R, Shi Z X, et al. Designing of the homogenization-solution heat treatment for advanced single crystal superalloys [J]. Rare Met. Mater. Eng., 2017, 46: 1530
18 Hegde S R, Kearsey R M, Beddoes J C. Designing homogenization-solution heat treatments for single crystal superalloys [J]. Mater. Sci. Eng., 2010, A527: 5528
19 Lee H S, Kim D H, Kim D S, et al. Microstructural changes by heat treatment for single crystal superalloy exposed at high temperature [J]. J. Alloys Compd., 2013, 56: 135
20 Wen Y H, Lill J V, Chen S L, et al. A ternary phase-field model incorporating commercial CALPHAD software and its application to precipitation in superalloys [J]. Acta Mater., 2010, 58: 875
21 Zhang S H, Xie G, Zhang G, et al. Differential thermal analysis method for measuring initial melting teperature of single crystal superalloy [P]. Chin Pat, 202010283750.X, 2020
张少华, 谢 光, 张 功等. 一种测量单晶高温合金初熔温度的差热分析方法 [P]. 中国专利, 202010283750.X, 2020)
22 Yang Y F, Zhu K H, Wang Y J, et al. Analysis and discussion of differential thermal figures in physichemical experiment [J]. J. Zhejiang Norm. Univ. (Nat. Sci.), 2002, 25: 279
杨元法, 朱凯汉, 王月娟等. 物理化学实验中差热图谱的解析讨论 [J]. 浙江师范大学学报(自然科学版), 2002, 25: 279
23 Wagner M. Thermal Analysis in Practice [M]. Munich: Hanser, 2018: 101
24 Avrami M. Kinetics of phase change. I General theory [J]. J. Chem. Phys., 1939, 7: 1103
25 Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei [J]. J. Chem. Phys., 1940, 8: 212
26 Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III [J]. J. Chem. Phys., 1941, 9: 177
27 Sun Z Y, Liu C M. Diffusion and Phase Transformation in Alloys [M]. Shenyang: Northeastern University Press, 2002: 39
孙振岩, 刘春明. 合金中的扩散与相变 [M]. 沈阳: 东北大学出版社, 2002: 39
28 Karunaratne M S A, Cox D C, Carter P, et al. Modelling of the microsegregation in CMSX-4 superalloy and its homogenisation during heat treatment [A]. Superalloys 2000 [C]. Pennsylvania: TMS, 2000: 263
29 Jiang C, Gleeson B. Site preference of transition metal elements in Ni3Al [J]. Scr. Mater., 2006, 55: 433
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[6] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[7] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[8] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[9] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[10] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[11] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[12] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[13] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[14] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
[15] Dejian SUN,Lin LIU,Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(5): 619-626.
No Suggested Reading articles found!