Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (2): 182-190    DOI: 10.11900/0412.1961.2020.00222
Current Issue | Archive | Adv Search |
Review: Mechanism of Reactive Element Effect—Oxide Pegging
YANG Liang, LV Haotian, WAN Chunlei, GONG Qianming, CHEN Hao, ZHANG Chi, YANG Zhigang()
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Cite this article: 

YANG Liang, LV Haotian, WAN Chunlei, GONG Qianming, CHEN Hao, ZHANG Chi, YANG Zhigang. Review: Mechanism of Reactive Element Effect—Oxide Pegging. Acta Metall Sin, 2021, 57(2): 182-190.

Download:  HTML  PDF(1104KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High temperature protective coatings are involved in a wide variety of applications including aero engines and gas turbines. Reactive elements, including all rare-earth elements as well as Ti, Zr, and Hf, are increasingly used to modify high temperature protective coatings, and their main effects are reducing scale growth and improving scale adhesion. The mechanism through which reactive elements work is yet to be clearly understood. The current mechanism comprises “enhanced scale plasticity”, “graded seal mechanism”, “modification to growth process”, “chemical bonding”, “the vacancy sink model”, “oxide pegging”, “dynamic segregation theory”, and “the sulfur effect theory”. Among these, oxide pegging is perhaps the most important one, although some people may disagree. Oxide pegging is the result of the mechanical joining of an oxide to its corresponding alloy; it is a result of either the internal oxidation of added reactive elements or dispersed oxide particles growing in size and extending into the alloy. This paper offers an overview of the research progress on oxide pegging, including its proposed, the relationship between the peg and scale adherence, improving the “key-on” effect, and the peg formation and growth under different conditions (the doped reactive element with a low or high solid solute in the alloy, dispersed oxide added in the alloy, and two reactive elements doped into the alloy). Moreover, it sheds light on the model’s inability to explain the surface application of reactive elements on the alloy. Finally, the paper suggests future studies on this model, like focusing on how to obtain the ideal oxide pegging, developing a new model for oxide peg formation and growth with two or more reactive elements added to the alloy, and the cooperation effect between the oxide pegging and other mechanisms. The paper’s objective is to offer a better understanding of oxide pegging and to provide theoretical support for the studies on the reactive element effect and the design of materials in thermal barrier coating systems.

Key words:  high temperature oxidation      reactive element effect      oxide pegging     
Received:  28 June 2020     
ZTFLH:  TB31  
Fund: National Natural Science Foundation of China(52001182)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00222     OR     https://www.ams.org.cn/EN/Y2021/V57/I2/182

Fig.1  Structure of a two-layer thermal barrier coating[1]
Fig.2  Schematic diagram of different routes (I, II or III) of interface crack propagation an oxide peg[53,54]
No.Mass fraction of alloy composition / %Reactive element oxideImprovement of adherenceMechanism proposedRef.
1Co-10Cr-1AlAl2O3YesPegging[65]
2Co-10Cr-11Al-1HfHfO2YesPegging[69]
3Ni-20CrY2O3, CeO2YesChange of growth[71]
4Ni-20CrAl2O3, Y2O3, ThO2YesFine grain size[72]
5Fe-20Cr-4.5Al-0.5TiY2O3Yes

1. Improve scale plasticity

2. Change of growth

[73]

[74]

Table 1  Mechanism of adding active element oxide to improve TGO adhesion[65,69,71-74]
Fig.3  Schematic diagram of oxide peg formation in the alloy with two kinds of REs doped[79]
No.Mass fraction of alloy composition / %Surface applied oxideImprovement of adherenceMechanism proposedRef.
1Ni-20Cr-1SiCeO2YesPegging[86]
2Ni-20Cr-3AlCeO2Yes1. Pegging[70]
2. Reduced scale thickness
3Ni-20CrCeO2, Y2O3, La2O3YesChange of growth (?)[70]
4Ni-25CrCeO2, Y2O3, La2O3YesModified growth and early[87]
development of the oxide scale (?)
Table 2  Mechanism of surface application of some reactive element oxides to improve TGO adhesion[70,86,87]
1 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
2 Li M S, Zhang Y M. A review on effect of reactive elements on oxidation of metals [J]. Corros. Sci. Prot. Technol., 2001, 13: 333
李美栓, 张亚明. 活性元素对合金高温氧化的作用机制 [J]. 腐蚀科学与防护技术, 2001, 13: 333
3 Song P, Lu J S, Zhao B L, et al. The effects of reactive element additions on the oxidation properties of MCrAlY coating [J]. Mater. Rev., 2007, 21(7): 59
宋 鹏, 陆建生, 赵宝禄等. 活性元素影响MCrAlY涂层氧化性能的研究进展 [J]. 材料导报, 2007, 21(7): 59
4 Cao X Z, He J, Guo H B. Research progress of reactive element effect in alumina-forming alloys [J]. Surf. Technol., 2020, 49(1): 17
曹雪珍, 何 健, 郭洪波. 氧化铝形成合金中活性元素效应的研究进展 [J]. 表面技术, 2020, 49(1): 17
5 Pfeil L B, Griffiths W T. Improvement in heat-resisting alloys [P]. UK Pat, 459848, 1937
6 Wang X, Peng X, Tan X, et al. The reactive element effect of ceria particle dispersion on alumina growth: A model based on microstructural observations [J]. Sci. Rep., 2016, 6: 29593
7 Antill J E, Peakall K A. Influence of an alloy addition of yttrium on the oxidation behaviour of an austenitic and a ferritic stainless steel in carbon dioxide [J]. J. Iron Steel Inst., 1967, 205: 1136
8 Golightly F A, Stott F H, Wood G C. The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy [J]. Oxid. Met., 1976, 10: 163
9 McDonald J E, Eberhart J G. Adhesion in aluminum oxide-metal systems [J]. Trans. Metall. Soc. AIME, 1965, 233: 512
10 Tien J K, Pettit F S. Mechanism of oxide adherence on Fe-25Cr-4Al (Y or Sc) alloys [J]. Metall. Trans., 1972, 3: 1587
11 Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45: 1
12 Lees D G. On the reasons for the effects of dispersions of stable oxides and additions of reactive elements on the adhesion and growth-mechanisms of chromia and alumina scales-the “sulfur effect” [J]. Oxid. Met., 1987, 27: 75
13 Smeggil J G, Funkenbusch A W, Bornstein N S. A relationship between indigenous impurity elements and protective oxide scale adherence characteristics [J]. Metall. Trans., 1986, 17A: 923
14 Mrowec S. Transport of gaseous species in growing oxide scales [J]. Oxid. Met., 1985, 23: 266
15 Stott F H, Wood G C. Growth and adhesion of oxide scales on Al2O3-forming alloys and coatings [J]. Mater. Sci. Eng., 1987, 87: 267
16 Stott F H. The protective action of oxide scales in gaseous environments at high temperature [J]. Rep. Prog. Phys., 1987, 50: 861
17 Stringer J. The reactive element effect in high-temperature corrosion [J]. Mater. Sci. Eng., 1989, A120-121: 129
18 Strawbridge A, Hou P Y. The role of reactive elements in oxide scale adhesion [J]. Mater. High Temp., 1994, 12: 177
19 Peng X, Guan Y, Dong Z, et al. A fundamental aspect of the growth process of alumina scale on a metal with dispersion of CeO2 nanoparticles [J]. Corros. Sci., 2011, 53: 1954
20 Lustman B. The intermittent oxidation of some nickel-chromium base alloys [J]. JOM, 1950, 2(8): 995
21 Felten E J, Pettit F S. Development, growth, and adhesion of Al2O3 platinum-aluminum alloys [J]. Oxid. Met., 1976, 10: 189
22 Golightly F A, Stott F H, Wood G C. The relationship between oxide grain morphology and growth mechanisms for Fe-Cr-Al and Fe-Cr-Al-Y alloys [J]. J. Electrochem. Soc., 1979, 126: 1035
23 Hindam H M, Smeltzer W W. Growth and microstructure of α-Al2O3 on Ni-Al alloys: Internal precipitation and transition to external scale [J]. J. Electrochem. Soc., 1980, 127: 1622
24 Hindam H, Whittle D P. High temperature internal oxidation behaviour of dilute Ni-Al alloys [J]. J. Mater. Sci., 1983, 18: 1389
25 Felten E J. High-temperature oxidation of Fe-Cr base alloys with particular reference to Fe-Cr-Y alloys [J]. J. Electrochem. Soc., 1961, 108: 490
26 Francis J M, Whitlow W H. The effect of yttrium on the high temperature oxidation resistance of some Fe-Cr base alloys in carbon dioxide [J]. Corros. Sci., 1965, 5: 701
27 Kvernes I A. The role of yttrium in high-temperature oxidation behavior of Ni-Cr-Al alloys [J]. Oxid. Met., 1973, 6: 45
28 Price C W, Wright I G, Wallwork G R. Examination of oxide scales in the SEM using backscattered electron images [J]. Metall. Trans., 1973, 4: 2423
29 Golightly F A, Wood G C, Stott F H. The early stages of development of α-Al2O3 scales on Fe-Cr-Al and Fe-Cr-Al-Y alloys at high temperature [J]. Oxid. Met., 1980, 14: 217
30 Nowok J. Formation mechanisms of keying or pegging yttrium oxide and increased plasticity of alumina scale on FeCrAlY [J]. Oxid. Met., 1982, 18: 1
31 Amano T. High-temperature oxidation resistance of Al2O3- and Cr2O3-forming heat-resisting alloys with noble metals and rare earths [J]. ESC Trans., 2010, 25: 3
32 Amano T. High-temperature oxidation of FeCrAl(Y, Pt) alloys in oxygen-water vapour [J]. Mater. High Temp., 2011, 28: 342
33 Giggins C S, Kear B H, Pettit F S, et al. Factors affecting adhesion of oxide scales on alloys [J]. Metall. Trans., 1974, 5: 1685
34 Stringer J, Allam I M, Whittle D P. The high temperature oxidation of Co-Cr-Al alloys containing yttrium or hafnium additions [J]. Thin Solid Films, 1977, 45: 377
35 Allam I M, Akuezue H C, Whittle D P. Influence of small Pt additions on Al2O3 scale adherence [J]. Oxid. Met., 1980, 14: 517
36 Amano T, Isobe H, Yamada K, et al. The morphology of alumina scales formed on Fe-20Cr-4Al-S alloys with reactive element (Y, Hf) additions at 1273 K [J]. Mater. High Temp., 2003, 20: 387
37 He J, Zhang Z, Peng H, et al. The role of Dy and Hf doping on oxidation behavior of two-phase (γ'+β) Ni-Al alloys [J]. Corros. Sci., 2015, 98: 699
38 Li D Q, Guo H B, Wang D, et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200oC [J]. Corros. Sci., 2013, 66: 125
39 Kahn A S, Lowell C E, Barrett C A. The effect of zirconium on the isothermal oxidation of nominal Ni-14Cr-24Al alloys [J]. J. Electrochem. Soc., 1980, 127: 670
40 Barrett C A, Khan A S, Lowell C E. The effect of zirconium on the cyclic oxidation of NiCrAl alloys [J]. J. Electrochem. Soc., 1981, 128: 25
41 Amano T, Yajima S, Saito Y. High-temperature oxidation behavior of Fe-20Cr-4Al alloys with small additions of cerium [J]. Trans. Jpn. Inst. Met., 1979, 20: 431
42 Whittle D P, Stringer J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions [J]. Philos. Trans. R. Soc. London, 1980, 295: 309
43 Whittle D P, Boone D H. Alumina scale adherence to CoCrAl alloys and coating [A] Surfaces and Interfaces in Ceramic and Ceramic—Metal Systems [C]. Boston, MA: Springer, 1981: 487
44 Pint B A. Progress in understanding the reactive element effect since the Whittle and Stringer literature review [A]. Proceedings of the John Stringer Symposium on High Temperature Corrosion [C]. Ohio: ASM International Materials Park, 2003: 9
45 Stott F H. Methods of improving adherence [J]. Mater. Sci. Technol., 1988, 4: 431
46 Delaunay D, Huntz A M. Mechanisms of adherence of alumina scale developed during high-temperature oxidation of Fe-Ni-Cr-Al-Y alloys [J]. J. Mater. Sci., 1982, 17: 2027
47 Kuenzly J D, Douglass D L. The oxidation mechanism of Ni3Al containing yttrium [J]. Oxid. Met., 1974, 8: 139
48 Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
49 Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
50 Xu T, Faulhaber S, Mercer C, et al. Observations and analyses of failure mechanisms in thermal barrier systems with two phase bond coats based on NiCoCrAlY [J]. Acta Mater., 2004, 52: 1439
51 He M Y, Evans A G, Hutchinson J W. Effects of morphology on the decohesion of compressed thin films [J]. Mater. Sci. Eng., 1998, A245: 168
52 Mumm D R, Evans A G. On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition [J]. Acta Mater., 2000, 48: 1815
53 Yang L, Choi R, Zheng Y, et al. Spalling resistance of thermally grown oxide based on NiCoCrAlY(Ti) with different oxide peg sizes [J]. Rare Met., 2020. doi: 10.1007/s12598-019-01339-7
54 Yang L. Effect of active element Ti and Y co-doping on antioxidant behavior of CoNiCrAl alloy [R]. Beijing: Tsinghua University, 2020
杨 亮. 活性元素Ti和Y共掺杂对CoNiCrAl合金抗氧化行为的影响研究 [R]. 北京: 清华大学, 2020
55 Whittle D P, Boone D H, Allam I M. Morphology of Al2O3 scales on doped Co-Cr-Al coatings [J]. Thin Solid Films, 1980, 73: 359
56 Pivin J C, Delaunay D, Roques-Carmes C, et al. Oxidation mechanism of Fe-Ni-20-25Cr-5Al alloys-influence of small amounts of yttrium on oxidation kinetics and oxide adherence [J]. Corros. Sci., 1980, 20: 351
57 Pendse R, Stringer J. The influence of alloy microstructure on the oxide peg morphologies in a Co-10%Cr-11%Al alloy with and without reactive element additions [J]. Oxid. Met., 1985, 23: 1
58 Hindam H, Whittle D P. Mechanism of peg growth and influence on scale adhesion [R]. Berkeley: Lawrence Berkeley National Laboratory, 1982
59 Shaffer S J, Boone D H, Lambertson R T, et al. The effect of deposition and processing variables on the oxide structure of M-Cr-Al coatings [J]. Thin Solid Films, 1983, 107: 463
60 Allam I M, Whittle D P, Stringer J. The oxidation behavior of CoCrAl systems containing active element additions [J]. Oxid. Met., 1978, 12: 35
61 Rapp R A. Kinetics, microstructures and mechanism of internal oxidation—Its effect and prevention in high temperature alloy oxidation [J]. Corrosion, 1965, 21: 382
62 Whittle D P, El-Dahshan M E, Stringer J. The oxidation behaviour of cobalt-base alloys containing dispersed oxides formed by internal oxidation [J]. Corros. Sci., 1977, 17: 879
63 Goncel O T, Stringer J, Whittle D P. The effect of internal stable nitride and oxide dispersion on the high temperature oxidation of Fe-Cr alloys [J]. Corros. Sci., 1978, 18: 701
64 Seltzer M S, Wilcox B A, Stringer J. The oxidation behavior of Ni-Cr-Al-2ThO2 alloys at 1093oC and 1204oC [J]. Metall. Trans., 1972, 3: 2391
65 Kingsley L M. Al2O3 adherence on CoCrAl alloys [D]. California: University of California, 1980
66 Seybolt A U. High temperature oxidation of chromium containing Y2O3 [J]. Corros. Sci., 1966, 6: 263
67 Pint B A. The oxidation behavior of oxide-dispersed β-NiAl: I. Short-term performance at 1200oC [J]. Oxid. Met., 1998, 49: 531
68 Pint B A, Hobbs L W. The oxidation behavior of Y2O3-dispersed β-NiAl [J]. Oxid. Met., 2004, 61: 273
69 Allam I M, Whittle D P, Stringer J. Improvements in oxidation resistance by dispersed oxide addition: Al2O3-forming alloys [J]. Oxid. Met., 1979, 13: 381
70 Saito Y, Önay B. Improvements of scale adherence on heat-resisting alloys and coatings by rare earth additions [J]. Surf. Coat. Technol., 1990, 43-44: 336
71 Stringer J, Wileox B A, Jaffee R I. The high-temperature oxidation of nickel-20wt.% chromium alloys containing dispersed oxide phases [J]. Oxid. Met., 1972, 5: 11
72 Wright I G, Wilcox B A, Jaffee R I. The high-temperature oxidation of Ni-20%Cr alloys containing various oxide dispersions [J]. Oxid. Met., 1975, 9: 275
73 Przybylski K, Garratt-Reed A J, Pint B A, et al. Segregation of Y to grain boundaries in the Al2O3 scale formed on an ODS alloy [J]. J. Electrochem. Soc., 1987, 134: 3207
74 Ramanarayanan T A, Ayer R, Petkovic-Luton R, et al. The influence of yttrium on oxide scale growth and adherence [J]. Oxid. Met., 1988, 29: 445
75 Hindam H, Whittle D P. Peg formation by short-circuit diffusion in Al2O3 scales containing oxide dispersions [J]. J. Electrochem. Soc., 1982, 129: 1147
76 Hindam H, Whittle D P. Microstructure, adhesion and growth kinetics of protective scales on metals and alloys [J]. Oxid. Met., 1982, 18: 245
77 Mennicke C, He M Y, Clarke D R, et al. The role of secondary oxide inclusions (“pegs”) on the spalling resistance of oxide films [J]. Acta Mater., 2000, 48: 2941
78 Cao X Z, He J, Chen H, et al. The formation mechanisms of HfO2 located in different positions of oxide scales on Ni-Al Alloys [J]. Corros. Sci., 2020, 167: 108481
79 Yang L, Zheng Y, Wan C L, et al. Characteristics of oxide pegs in Ti- and Y-doped CoNiCrAl alloys at 1150°C [J]. Rare Met., 2020. doi: 10.1007/s12598-020-01577-0
80 Hou P Y, Shui Z R, Chuang G Y, et al. Effect of reactive element oxide coatings on the high temperature oxidation behavior of a FeCrAl alloy [J]. J. Electrochem. Soc., 1992, 139: 1119
81 Collins R A, Muhl S, Dearnaley G. The effect of rare earth impurities on the oxidation of chromium [J]. J. Phys., 1979, 9F: 1245
82 Przybylski K, Yurek G J. The influence of implanted yttrium on the microstructures of chromia scales formed on a Co-45 weight percent Cr alloy [J]. J. Electrochem. Soc., 1988, 135: 517
83 Hou P, Chia V, Brown I. Distribution of ion-implanted yttrium in Cr2O3 scales and in the underlying Ni-25wt.%Cr alloy [J]. Surf. Coat. Technol., 1992, 51: 73
84 Hou P Y, Brown I G, Stringer J. Study of the effect of reactive-element addition by implanting metal ions in a preformed oxide layer [J]. Nucl. Instrum. Methods Phys. Res., 1991, 59-60B: 1345
85 Hou P Y, Stringer J. The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales [J]. Mater. Sci. Eng., 1995, A202: 1
86 Saito Y, Maruyama T, Amano T. Adherence of oxide scale formed on Ni-20Cr-1Si alloys with small additions of rare earth elements [J]. Mater. Sci. Eng., 1987, 87: 275
87 Hou P Y. The effect of surface-applied reactive elements on the high temperature oxidation of chromium-containing alloys [D]. California: University of California, 1986
[1] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[2] XIE Leipeng, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Effects of Processing on Microstructures and Properties of FGH4097 Superalloy[J]. 金属学报, 2022, 58(8): 992-1002.
[3] Mingyu ZHAO,Huijuan ZHEN,Zhihong DONG,Xiuying YANG,Xiao PENG. Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating[J]. 金属学报, 2019, 55(7): 902-910.
[4] GAO Bo, WANG Lei, SONG Xiu, LIU Yang, YANG Shuyu, CHIBA Akihiko. Effect of Pre-Oxidation on High Temperature Oxidation and Corrosion Behavior of Co-Al-W-Based Superalloy[J]. 金属学报, 2019, 55(10): 1273-1281.
[5] Yin BAI, Zhengdong LIU, Jianxin XIE, Hansheng BAO, Zhengzong CHEN. Effect of Pre-Oxidation Treatment on the Behavior of High Temperature Oxidation in Steam of G115 Steel[J]. 金属学报, 2018, 54(6): 895-904.
[6] Yuxiang ZENG,Xiping GUO,Yanqiang QIAO,Zhongyi NIE. EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND OXIDATION RESISTANCE OF Nb-Ti-Si BASE ULTRAHIGH-TEMPERATURE ALLOYS[J]. 金属学报, 2015, 51(9): 1049-1058.
[7] Haigen ZHAO,Shusuo LI,Yanling PEI,Shengkai GONG,Huibin XU. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ni3Al-BASED SINGLE CRYSTSAL ALLOY IC21[J]. 金属学报, 2015, 51(10): 1279-1287.
[8] ZHOU Xiaowei SHEN Yifu GU Dongdong. MICROSTRUCTURE AND HIGH TEMPERATURE OXIDATION RESISTANCE OF NANOCRYSTALLINE Ni–CeO2 COMPOSITE COATINGS DEPOSITED BY DOUBLE–PULSED ELECTRO DEPOSITION[J]. 金属学报, 2012, 48(8): 957-964.
[9] YU Daqian, LU Xuyang, MA Jun, JIANG Sumeng, LIU Shanchuan, GONG Jun, SUN Chao. STUDY OF OXIDATION BEHAVIOR OF THE GRADIENT NiCrAlY COATING AT 1000 AND 1100 ℃[J]. 金属学报, 2012, 48(6): 759-768.
[10] SONG Peng LU Jiansheng ZHANG Defeng LU Jianguo LI Dejiang. EFFECT OF La AND Hf DOPANT ON THE HIGH TEMPERATURE OXIDATION OF CoNiCrAl ALLOYS[J]. 金属学报, 2011, 47(6): 655-662.
[11] PENG Xin JIANG Sumeng DUAN Xuhai GONG Jun SUN Chao. HIGH TEMPERATURE OXIDATION BEHAVIOR OF A (MCrAlY+AlSiY) COMPOSITE COATING[J]. 金属学报, 2009, 45(3): 378-384.
[12] Xinqing Zhao. THE EFFECT OF Nb ON THE OXIDATION BEHAVIOR OF TiNiAl ALLOYS[J]. 金属学报, 2006, 42(8): 820-826 .
[13] ZHANG Xuejun; WU Weitao; NIU Yan. Effect Of Silver Addition On Surface Morphology Of Al2O3 Scales During Oxidation Of β-NiAl[J]. 金属学报, 2005, 41(4): 369-374 .
[14] GUO Minghu; WANG Qimin; KE Peiling; CUI Yuyou; GONG Jun; SUN Chao; WEN Lishi. Effect of Ni-Al coating on high temperature oxidation behaviors of Ti-22Al-26Nb alloy[J]. 金属学报, 2005, 41(3): 312-316 .
[15] JIANG Wenhui; YAO Xiangdong; GUAN Hengrong; HU Zhuangqi ( Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Shenyang Polytechnic University; Shenyang 110023). HIGH TEMPERATUER LOW CYCLE FATIGUE OF DZ40M COBALT-BASE SUPERALLOY[J]. 金属学报, 1998, 34(4): 378-383.
No Suggested Reading articles found!