Please wait a minute...
Acta Metall Sin  1993, Vol. 29 Issue (3): 25-29    DOI:
Current Issue | Archive | Adv Search |
IMPROVEMENT OF DUCTILITY AND TOUGHNESS AT ROOM TEMPERATURE IN Ni-RICH NiAl
CHENG Tianyi;CANTOR B;FLOWER H M;McLEAN M Beijing Institute of Technology University of Oxford; UK Imperial College; UK associate professor;Faculty of Metallography; Beijing Institute of Technology; Beijing 100081
Cite this article: 

CHENG Tianyi;CANTOR B;FLOWER H M;McLEAN M Beijing Institute of Technology University of Oxford; UK Imperial College; UK associate professor;Faculty of Metallography; Beijing Institute of Technology; Beijing 100081. IMPROVEMENT OF DUCTILITY AND TOUGHNESS AT ROOM TEMPERATURE IN Ni-RICH NiAl. Acta Metall Sin, 1993, 29(3): 25-29.

Download:  PDF(1458KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In rapidly solidified Ni-34.6 at-%Al alloy, when cooling rate duringsolidification reached the order of 10~6K/s, the size of the microstructures, such as grain andsubstructure of the martensite, decreased dramatically. The various kinds of interfaces withhigh density and homogeneous distribution resisted effectively the propagation of the cracksand resulted in localized plastic deformation ahead of the tips of microcracks. The ductilityand toughness at room temperature of the Ni-rich NiAl may be improved considerably.
Key words:  NiAl      rapid solidification      ductility      toughness     
Received:  18 March 1993     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1993/V29/I3/25

1 Darolia R. J Met 1991; (3) : 44
2 Schulson E M, Barker D R. Scr Metall, 1983; 24: 519
3 Gaydosh D J, Jech R W. Titran R H. J Mater Sci lett, 1985; 4: 138
4 Schulson E M. Int Powder Metall, 1987; 1: 25
5 Chan K S. Scr Metall, 1990: 24: 1725
6 Nagpal P. Baker I. Scr Metall, 1990; 24: 2381
7 程天一,章守华.快速凝固技术与新型合金,北京:宇航出版社,1990
8 Koch C C. In: Sastry S M L, MacDonald E A eds., Mechanical Behavior of Rapidly Solidified Materials, Warrendale, PA: TMS, 1986:
9 Han K H, Vedula K. Scr Metall, 1989; 23: 7
10 Bartholomeusz M F, Wert J A. J Mater Res. 1992; 7: 919V
[1] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[2] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[4] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[5] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[6] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[7] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
[8] ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. 金属学报, 2022, 58(12): 1557-1569.
[9] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[10] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[11] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[12] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[13] ZHANG Xiancheng, ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung. Design and Manufacture of Heterostructured Metallic Materials[J]. 金属学报, 2022, 58(11): 1399-1415.
[14] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[15] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
No Suggested Reading articles found!