Please wait a minute...
Acta Metall Sin  1992, Vol. 28 Issue (8): 7-10    DOI:
Current Issue | Archive | Adv Search |
MICROSTRUCTURE IN LASER FUSED HIGH SPEED STEEL W6Mo5Cr4V2(M2)
LIU Ning; CUI Kun (Huazhong University of Science and Technology; Wuhan); DENG Zonggang(Hefei University of Technology); CHENG Benpei; KONG Jie(Institute of Solid State Physics; Academia Sinica; Hefei)
Cite this article: 

LIU Ning; CUI Kun (Huazhong University of Science and Technology; Wuhan); DENG Zonggang(Hefei University of Technology); CHENG Benpei; KONG Jie(Institute of Solid State Physics; Academia Sinica; Hefei). MICROSTRUCTURE IN LASER FUSED HIGH SPEED STEEL W6Mo5Cr4V2(M2). Acta Metall Sin, 1992, 28(8): 7-10.

Download:  PDF(1439KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Microstructure of the deepest zone of laser fursxed high speed steel W6MoSCr4V2(M2) was found to be so fine as the chill zone of a solidified ingot. When narrower chill zone formed, the long columnar dendrites grow into the melt and then the fine equiaxed cellular structure reveals in upper melt region nearby surface. The substructure of cellular grains and dendrites was observed to consist of martensite and retained austenite, while the carbides as M_6C, Cr_7C_3 and MC distributed at their interfaces. It is believed that the high microhardness, HV_(0.1)=865—960, of the laser fused structure of the alloy is due to the occurrence of martensite.
Key words:  high speed steel W6Mo5Cr4V2(M2)      laser fused treatment      microstructure     
Received:  18 August 1992     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1992/V28/I8/7

1 Ⅱ brheHko B C. MnTom, 1985; 8: 50
2 Ⅱ brheHko B C. MnTom, 1986; 9: 11
3 Kusinski J. Metall Trans, 1988; 19A: 377
4 Kin Y W, Strutt P R, Nowotny H. Metall Trans, 1979; 10A: 881
5 Strutt P R, Nowotny H, Tuli M, Kear B H. Mater Sci Eng, 1978; 36: 217
6 Strutt P R, Mater Sci Eng, 1980; 44: 239
7 刘宁,合肥工业大学硕士学位论文,1991
8 胡根祥,钱苗根,金属学,上海:上海科学技术出版社,1980:174H
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!