Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (4): 489-497    DOI: 10.3724/SP.J.1037.2013.00719
Current Issue | Archive | Adv Search |
EFFECT OF HEAT TREATMENT BEFORE WELDING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED SiCp/Al-Cu-Mg COMPOSITE JOINTS
WANG Dong1,2, WANG Quanzhao2, XIAO Bol2, NI Dingrui2, MA Zongyi2()
1 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WANG Dong, WANG Quanzhao, XIAO Bol, NI Dingrui, MA Zongyi. EFFECT OF HEAT TREATMENT BEFORE WELDING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED SiCp/Al-Cu-Mg COMPOSITE JOINTS. Acta Metall Sin, 2014, 50(4): 489-497.

Download:  HTML  PDF(5243KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Discontinuously reinforced aluminum matrix composites (AMCs) have been widely applied in structures of aerospace industry. Wide industrial applications of AMCs depend on effective joining methods, which are dependent on the use of a specific material and process. As a new solid-state welding technique, friction stir welding (FSW) has been attempted for joining the AMCs in last few years. However, few attentions have been paid to the effect of initial heat treatment tempers of the AMCs on the FSW joints. In this work, 6 mm thick SiCp/2009Al composite plates in both soft (solution temper) and hard (natural aging temper) conditions were successfully friction stir welded at a rotation rate of 800 r/min and a welding speed of 100 mm/min (named as Sol-FSW and T4-FSW samples). In the nugget zone (NZ) of both samples, the grain size and the distribution of the coarse Al2Cu phases were similar. In the heat affected zone, two low hardness zones (LHZs) were observed. LHZ I adjacent to the NZ had the lowest hardness. Both samples had the similar hardness in this zone. For the Sol-FSW sample, LHZ II far away from the NZ had a higher hardness and was closer to the NZ compared to that of the T4-FSW sample. The ultimate tensile strength of both the samples was similar and reached 83% of T4-tempered base metal. Both samples failed in LHZ I adjacent to the NZ due to the lowest hardness in this zone. This indicates that for the SiCp/2009Al composite under solution temper it is possible to produce similar joints to that under natural aging temper using FSW technique. FSW of the composites under soft condition is beneficial to enlarging the welding process window and reducing the tool wear.

Key words:  aluminum matrix composite      friction stir welding      microstructure      precipitate      mechanical property     
Received:  11 November 2013     
ZTFLH:  TG146. 2  
Fund: Supported by National Basic Research Program of China (No.2012CB619600)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00719     OR     https://www.ams.org.cn/EN/Y2014/V50/I4/489

Sample Heat treatment and welding processing
BM Solutionized at 516 ℃ for 1 h, water quenching, naturally aged for 7 d
Sol-FSW Solutionized at 516 ℃ for 1 h, quenching, welded, naturally aged for 7 d
T4-FSW BM sample welded, naturally aged for 7 d
T4-FSW-T4 T4-FSW sample re-solutionized at 516 ℃ for 1 h, water quenching, naturally aged for 7 d
表1  15%SiCp/2009Al复合材料FSW接头及母材的热处理状态
Fig.1  

固溶态及自然时效态15%SiCp/2009Al的FSW接头硬度曲线

Fig.2  

固溶态及自然时效态15%SiCp/2009Al的FSW接头及母材的拉伸断口

Sample YS / MPa UTS / MPa EL / % UTSJoint/UTSBM Fracture location
BM 332 538 12.6 -  -
Sol-FSW 297 445 5.7 0.83 LHZ I
T4-FSW 300 444 4.1 0.83 LHZ I
T4-FSW-T4 323 516 8.6 0.96 LHZ I
Table 2  Tensile properties of FSW 15%SiCp/2009Al joints and base material
Fig.3  

固溶态15%SiCp/2009Al的FSW接头宏观形貌

Fig.4  

固溶态及自然时效态15%SiCp/2009Al的FSW接头及母材的金相组织

Fig.5  

固溶态及自然时效态15%SiCp/2009Al的FSW接头及母材的背散射电子像

Fig.6  

固溶态及自然时效态15%SiCp/2009Al的FSW接头及母材的XRD谱

Fig.7  

固溶态及自然时效态15%SiCp/2009Al的FSW接头焊核区及母材的TEM像

Fig.8  

固溶态及自然时效态15%SiCp/2009Al 的FSW接头LHZ I 的TEM像

[1] Lloyd D J. Int Mater Rev, 1994; 39: 1
[2] Tjong S C, Ma Z Y. Mater Sci Eng, 2000; R29: 49
[3] Xu S J, Xiao B L, Liu Z Y, Wang W G, Ma Z Y. Acta Metall Sin, 2012; 48: 882
(许世娇, 肖伯律, 刘振宇, 王文广, 马宗义. 金属学报, 2012; 48: 882)
[4] Zhang Q, Wang Q Z, Xiao B L, Ma Z Y. Acta Metall Sin, 2012; 48: 135
(张 琪, 王全兆, 肖伯律, 马宗义. 金属学报, 2012; 48: 135)
[5] Ellis M B D. Int Mater Rev, 1996; 41: 41
[6] Ni D R, Chen D L, Xiao B L, Wang D, Ma Z Y. Mater Des, 2013; 55: 64
[7] Wang D, Xiao B L, Wang Q Z, Ma Z Y. J Mater Sci Technol, 2014; 30: 54
[8] Srivatsan T S, Meslet A H, Petraroli M, Hotton B, Lam P C. Mater Sci Eng, 2002; A325: 202
[9] Shindo D J, Rivera A R, Murr L E. J Mater Sci, 2002; 37: 4999
[10] Liu H J, Fenga J C, Fujiib H, Nogi K. Int J Mach Tool Manuf, 2005; 45: 1635
[11] Prado R A, Murr L E, Shindo D J, Sota K F. Scr Mater, 2001; 45: 75
[12] Wang D, Wang Q Z, Xiao B L, Ma Z Y. Mater Sci Eng, 2014; A589: 271
[13] Marzoli L M, Strombeck A V, Dos Santos J F, Gambaro C, Volpone L M. Compos Sci Technol, 2006; 66: 363
[14] Wang D, Xiao B L, Wang Q Z, Ma Z Y. Mater Des, 2007; 28: 1440
[15] Feng A H, Xiao B L, Ma Z Y. Compos Sci Technol, 2008; 68: 2141
[16] Genevois C, Deschamps A, Denquin A, Cottignies B D. Acta Mater, 2005; 538: 2447
[17] McNelley T R, Swaminathan S, Su J Q. Scr Mater, 2008; 58: 349
[18] Inem B. Mater Sci Eng, 1995; A197: 91
[19] Charit I, Mishra R S. Scr Mater, 2008; 58: 367
[20] Jariyaboon M, Davenport A J, Ambat R, Connolly B J, Williams S W, Price D A. Corros Sci, 2007; 49: 877
[21] Mahoney M W, Rhodes C G, Flintoff J G, Spurling R A, Bingel W H. Metall Mater Trans, 1998; 29A: 1955
[22] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[23] Wang S C, Starink M J. Int Mater Rev, 2005; 50: 193
[24] Rodrigo P, Poza P, Utrilla V, Urena A. J Alloys Compd, 2009; 479: 451
[25] Marceau R K W, Sha G, Lumley R N, Ringer S P. Acta Mater, 2010; 58: 1795
[26] Liu F C, Ma Z Y. Metall Mater Trans, 2005; 36A: 2378
[27] Zhang Z. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012
(张 振. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[28] Jones M J, Heurtier P, Desrayaud C, Montheillet F, Allehaux D, Driver J H. Scr Mater, 2005; 52: 693
[29] Homma T, Moody M P, Saxey D W, Ringer S P. Metall Mater Trans, 2012; 43A: 2192
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!