Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (4): 498-506    DOI: 10.3724/SP.J.1037.2013.00559
Current Issue | Archive | Adv Search |
FINITE ELEMENT SIMULATION OF THE EFFECT OF STRESS RELAXATION ON STRAIN-INDUCED MARTENSITIC TRANSFORMATION
FENG Rui, ZHANG Meihan, CHEN Nailu, ZUO Xunwei, RONG Yonghua()
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
Cite this article: 

FENG Rui, ZHANG Meihan, CHEN Nailu, ZUO Xunwei, RONG Yonghua. FINITE ELEMENT SIMULATION OF THE EFFECT OF STRESS RELAXATION ON STRAIN-INDUCED MARTENSITIC TRANSFORMATION. Acta Metall Sin, 2014, 50(4): 498-506.

Download:  HTML  PDF(3924KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Near 50 years ago, transformation induced plasticity (TRIP) effect was proposed and TRIP steels as an advanced high strength one are widely investigated. However, the mechanism of TRIP effect can be only qualitatively explained, and has not been experimentally and theoretically verified so far. In this work, a strain equivalent model for strain-induced martensitic transformation was built in a microstructure-based finite element model of novel quenching-partitioning-tempering (Q-P-T) steel. With the model, the TRIP effect under the condition of uniaxial tension was simulated, from which the micro-mechanism of TRIP effect is revealed. Stress relaxation from TRIP relieves the stresses within untransformed retained austenite and its adjacent martensite and blocks the formation of cracks, meanwhile, a considerable retained austenite still exists at higher strain level, which is the origin of TRIP effect. Compared with original (thermal-induced) martensite, fresh (strain-induced) martensite bears higher stress. Therefore, it could be predicted that cracks form at first in fresh martensite or its boundaries. Moreover, stress relaxation makes strain-induced martensite formed in intermittent and slow way, and this is consistent with experimental results. However, in stress-free relaxation state fresh martensite appears in successive and quick way, not consistent with experiments, and thus this verifies in opposite way that TRIP effect inevitably produces stress relaxation.

Key words:  quenching-partitioning-tempering (Q-P-T) steel      transformation induced plasticity (TRIP)      finite element simulation      stress relaxation      uniaxial tension     
Received:  05 September 2013     
ZTFLH:  TG142  
Fund: Supported by National Natural Science Foundation of China (Nos.51031001 and 51371117)
About author:  null

冯 瑞, 男, 1988年生, 硕士生

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00559     OR     https://www.ams.org.cn/EN/Y2014/V50/I4/498

Fig.1  

Q-P-T钢微观组织的EBSD图和对应的二维有限元模型

Fig.2  Flow stress-strain curves of austenite and martensite in Q-P-T steel
Fig.3  

Q-P-T 实验用钢的工程应力-应变曲线和不同应变下的残余奥氏体含量变化曲线

Fig.4  

引入应力松弛量的一个马氏体相变简单近似模型

Fig.5  

Q-P-T 钢在不同应变量下的von Mises 应力分布图

Fig.6  

有限元模型模拟的Q-P-T钢的宏观单轴拉伸应力-应变曲线与实验单轴拉伸应力-应变结果的比较

Fig.7  

有限元模拟的奥氏体、马氏体内不同节点真应力-真应变曲线

Fig.8  

应力松弛效应下有限元模拟单向拉伸下不同应变的应变诱发马氏体分布(黄色代表原马氏体, 蓝色代表残余奥氏体, 红色代表应变诱发马氏体)

Fig.9  

无应力松弛效应下有限元模拟单向拉伸下不同应变的应变诱发马氏体分布(黄色代表原马氏体, 蓝色代表残余奥氏体, 红色代表应变诱发马氏体)

Fig.10  

应力松弛和无应力松弛状态下模拟的奥氏体含量和实验测得的奥氏体含量随应变变化曲线

[1] Zackay V F, Parker E R, Fahr D, Busch R. ASM Trans Quart, 1967; 60: 252
[2] Bhadeshia H K D H. ISIJ Int, 2002; 42: 1059
[3] Wang X D, Huang B X, Rong Y H, Wang L. J Mater Sci Technol, 2006; 22: 625
[4] Zhou S, Zhang K, Wang Y, Gu J F, Rong Y H. Metall Mater Trans, 2012; 43A: 1026
[5] Olson G B, Cohen M. Metall Trans, 1975; 6A: 791
[6] Stringfellow R G, Parks D M, Olson G B. Acta Metall Mater, 1992; 40: 1703
[7] Tomita Y, Iwamoto T. Int J Mech Sci, 2001; 43: 2017
[8] Iwamoto T, Tsuta T. Int J Plast, 2002; 18: 1583
[9] Serri J, Cherkaoui M. J Eng Mater Technol, 2008; 130: 031009-1
[10] Choi K S, Liu W N, Sun X, Khaleel M A. Acta Mater, 2009; 57: 2592
[11] Choi K S, Liu W N, Sun X, Khaleel M A. Metall Mater Trans, 2009; 40A: 796
[12] Rong Y H. Int Heat Treat Surf Eng, 2011; 5: 145
[13] Zhang K, Zhang M H, Guo Z H, Chen N L, Rong Y H. Mater Sci Eng, 2011; A528: 8486
[14] Uthaisangsuk V, Prahl U, Bleck W. Comp Mater Sci, 2008; 43: 27
[15] Ludwik P. Elemente der Technologischen Mechanik. Berlin: Julius Springer, 1909: 32
[16] Pickering F B. Physical Metallurgy and the Design of Steels. London: Applied Science Publishers, 1978: 1
[17] Sugimoto K, Iida T, Sakaguchi J, Kashima T. ISIJ Int, 2000; 40: 902
[18] Zhang K. PhD Dissertation. Shanghai Jiao Tong University, 2011
(张 柯. 上海交通大学博士学位论文, 2011)
[19] Delannay L, Jacques P, Pardoen T. Int J Solids Struct, 2008; 45: 1825
[20] Leal R H. PhD Dissertation. Massachusetts Institute of Technology, 1984
[21] Zhang W F, Zhu J H, Cao C X. Heat Treat Met, 2005; 30(2): 62
(张旺峰, 朱金华, 曹春晓. 金属热处理, 2005; 30(2): 62)
[22] Muránsky O, Šittner P, Zrník J, Oliver E C. Acta Mater, 2008; 56: 3367
[23] Hsu T Y. Martensitic Transformation and Martensite. Beijing: Science Press, 1999: 147
(徐祖耀. 马氏体相变与马氏体. 北京: 科学出版社, 1999: 147)
[24] Bhadeshia H K D H. Mater Sci Eng, 2004; A378: 34
[25] Park K K, Oh S T, Baeck S M, Kim D I, Han J H, Han H N, Park S, Lee C G. Mater Sci Forum, 2002; 408-412: 571
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[3] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[4] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[5] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[6] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[7] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[8] Weifeng HE, Xiang LI, Xiangfan NIE, Yinghong LI, Sihai LUO. Study on Stability of Residual Stress Induced by Laser Shock Processing in Titanium Alloy Thin-Components[J]. 金属学报, 2018, 54(3): 411-418.
[9] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[10] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[11] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
[12] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[13] CAO Tieshan, FANG Xudong, CHENG Congqian, ZHAO Jie. CREEP BEHAVIOR OF TWO KINDS OF HR3C HEAT RESISTANT STEELS BASED ON STRESS RELAXATION TESTS[J]. 金属学报, 2014, 50(11): 1343-1349.
[14] LIU Renci, WANG Zhen, LIU Dong, BAI Chunguang, CUI Yuyou, YANG Rui. MICROSTRUCTURE AND TENSILE PROPERTIES OF Ti-45.5Al-2Cr-2Nb-0.15B ALLOY PROCESSED BY HOT EXTRUSION[J]. 金属学报, 2013, 49(6): 641-648.
[15] YAN Ying, LU Meng, LI Xiaowu. EFFECTS OF PRE-FATIGUE DEFORMATION ON THE  UNIAXIAL TENSILE BEHAVIOR OF COARSEGRAINED PURE Al[J]. 金属学报, 2013, 49(6): 658-666.
No Suggested Reading articles found!