Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 148-155    DOI: 10.3724/SP.J.1037.2013.00680
Current Issue | Archive | Adv Search |
DESIGN OF HIGH-PERFORMANCE Cu-BASED NANO-LAYERED MATERIALS: ON STRENGTHENING AND TOUGHENING ABILITIES AT THE NANOSCALES
ZHANG Guangping(), ZHU Xiaofei
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHANG Guangping, ZHU Xiaofei. DESIGN OF HIGH-PERFORMANCE Cu-BASED NANO-LAYERED MATERIALS: ON STRENGTHENING AND TOUGHENING ABILITIES AT THE NANOSCALES. Acta Metall Sin, 2014, 50(2): 148-155.

Download:  HTML  PDF(1118KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this paper, recent investigations on strengthening ability and effects of length scale and interface, plastic deformation behavior and stability of nanolayered metallic materials are reviewed systematically. The basic mechanisms on the abilities in strengthening and toughening for nanolayered metallic materials were discussed. Finally, several key issues on improving the strengthening and toughening abilities of the nanolayered materials and the potential investigations in the future are stressed.

Key words:  nanoscale      metal      layered material      strength      plastic deformation     
Received:  13 December 2013     
ZTFLH:  TG146  
Fund: Supported by National Basic Research Program of China (No.2010CB631003) and National Natural Science Foundation of China (Nos.51001105, 51071158 and 51371180)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00680     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/148

Fig.1  

铜基层状材料的强度与组元层单层厚度的关系

Fig.2  

Cu-X层状材料归一化的Hall-Petch斜率(k/(μb1/2))与点阵失配(δL)之间的关系[21]

Fig.3  

Cu基层状材料强度与单层厚度关系

Fig.4  

层状金属材料的强度与断裂伸长率关系

Fig.5  

纳米尺度金属多层材料微柱压缩强度与失效机制和尺度的关系示意图

Fig.6  

切应力诱导纳米尺度Cu/Au层状材料塑性变形能力再生的物理机制[62]

[1] Hall E O. Proc Phys Soc, 1951; 64B: 747
[2] Petch N J. J Iron Steel Inst, 1953; 174: 25
[3] Iwahashi Y, Wang J T, Horita Z, Nemoto M, Langdon T G. Scr Mater, 1996; 35: 143
[4] Valiev R Z, Estrin Y, Horita Z, Langdon T G, Zehetbauer M J, Zhu Y T. JOM, 2006; 58(4): 33
[5] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[6] Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong R G. Scr Mater, 1998; 39: 1221
[7] Hirth J P, Lothe J. Theory of Dislocations. 2nd Ed., New York: John Wiley & Sons, 1982: 788
[8] Meyers M A,Chawla K K. Mechanical Behavior of Materials. Cambridge: Cambridge University Press, 2009: 1
[9] Sevillano J G. In: Cahn R W, Haasen P, Kramer E, eds., Materials Science and Technology: A Comprehensive Treatment Plastic Deformation and Fracture of Materials. New York: VCH, 1993: 19
[10] Blum W. Trans Am Electrochem Soc, 1921; 40: 307
[11] Was G S, Foecke T. Thin Solid Films, 1996; 286: 1
[12] Clemens B M, Kung H, Barnett S A.MRS Bull, 1999; 24: 20
[13] Misra A, Hirth J P, Kung H. Philos Mag, 2002; 82A: 2935
[14] Zhang G P, Liu Y, Wang W, Tan J. Appl Phys Lett, 2006; 88: 013105
[15] Mara N A, Bhattacharyya D, Hoagland R G, Misra A. Scr Mater, 2008; 58: 874
[16] Misra A, Verdier M, Lu Y C, Kung H, Mitchell T E, Nastasi M, Embury J D. Scr Mater, 1998; 39: 555
[17] Wen S P, Zong R L, Zeng F, Gao Y, Pan F. Acta Mater, 2007; 55: 345
[18] Li Y P, Zhang G P, Wang W, Tan J, Zhu S J. Scr Mater, 2007; 57: 117
[19] McKeown J, Misra A, Kung H, Hoagland R G, Nastasi M. Scr Mater, 2002; 46: 593
[20] Zhang X, Misra A, Wang H, Shen T D, Nastasi M, Mitchell T E, Hirth J P, Hoagland R G, Embury J D. Acta Mater, 2004; 52: 995
[21] Yan J W, Zhang G P, Zhu X F, Liu H S, Yan C. Philos Mag, 2013; 93: 434
[22] Misra A, Hirth J P, Hoagland R G. Acta Mater, 2005; 53: 4817
[23] Armstrong R W. In: Martin J W, ed., Concise Encyclopedia of the Mechanical Properties of Materials. Oxford: Elsevier, 2007: 601
[24] Zhu Y T, Liao X Z, Wu X L. Prog Mater Sci, 2012; 57: 1
[25] Lehoczky S L. J Appl Phys, 1978; 49: 5479
[26] Zhang X, Misra A, Wang H, Shen T D, Swadener J G, Embury J D, Kung H, Hoagland R G, Nastasi A. J Mater Res, 2003; 18: 1600
[27] Huang H B, Spaepen F. Acta Mater, 2000; 48: 3261
[28] Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
[29] Hoagland R G, Kurtz R J, Henager C H. Scr Mater, 2004; 50: 775
[30] Anderson P M, Foecke T, Hazzledine P M. MRS Bull, 1999; 24: 27
[31] Li Y P, Zhang G P. Acta Mater, 2010; 58: 3877
[32] Koehler J S. Phys Rev, 1970; 2B: 547
[33] Hoagland R G, Mitchell T E, Hirth J P, Kung H. Philos Mag, 2002; 82A: 643
[34] Rao S I, Hazzledine P M. Philos Mag, 2000; 80A: 2011
[35] Zhu X F, Li Y P, Zhang G P, Tan J, Liu Y. Appl Phys Lett, 2008; 92: 161905
[36] Zhu X F, Zhang G P, Yan C, Zhu S J, Sun J.Philos Mag Lett, 2010; 90: 413
[37] Li Y P, Zhu X F, Tan J, Wu B, Zhang G P. Philos Mag Lett, 2009; 89: 66
[38] Li X Y, Wei Y J, Lu L, Lu K, Gao H J. Nature, 2010; 464: 877
[39] Tench D M, White J T. J Electrochem Soc, 1991; 138: 3757
[40] Mara N A, Misra A, Hoagland R G, Sergueeva A V, Tamayo T, Dickerson P, Mukherjee A K. Mater Sci Eng, 2008; A493: 274
[41] Lewis A C, Eberl C, Hemker K J, Weihs T P. J Mater Res, 2008; 23: 376
[42] Huang B, Ishihara K N, Shingu P H. J Mater Sci Lett, 2001; 20: 1669
[43] Wang Y M, Li J, Hamza A V, Barbee T W. Proc Nat Acad Sci, 2007; 104: 11155
[44] Zhang J Y, Zhang X, Liu G, Zhang G J, Sun J. Scr Mater, 2010; 63: 101
[45] Donohue A, Spaepen F, Hoagland R G, Misra A. Appl Phys Lett, 2007; 91: 241905
[46] Kavarana F H, Ravichandran K S, Sahay S S. Scr Mater, 2000; 42: 947
[47] Li Y P, Tan J, Zhang G P. Scr Mater, 2008; 59: 1226
[48] Li Y P, Zhu X F, Tan J, Wu B, Wang W, Zhang G P. J Mater Res, 2009; 24: 728
[49] Xie J Y, Huang P, Wang F, Li Y, Zhang L F, Xu K W. Integr Ferroelectr, 2013; 146: 168
[50] Wang D, Kups T, Schawohl J, Schaaf P.J Mater Sci, 2012; 23: 1077
[51] Wen S P, Zeng F, Pan F, Nie Z R. Mater Sci Eng, 2009; A526: 166
[52] Bhattacharyya D, Mara N A, Dickerson P, Hoagland R G, Misra A. J Mater Res, 2009; 24: 1291
[53] Knorr I, Cordero N M, Lilleodden E T, Volkert C A. Acta Mater, 2013; 61: 4984
[54] Li Y P, Zhu X F, Zhang G P, Tan J, Wang W, Wu B. Philos Mag, 2010; 90: 3049
[55] Wang F, Huang P, Xu M, Lu T J, Xu K W. Mater Sci Eng, 2011; A528: 7290
[56] Wen S P, Zong R L, Zeng F, Gao Y, Pan F. J Mater Res, 2007; 22: 3423
[57] Mara N A, Bhattacharyya D, Hirth J P, Dickerson P, Misra A. Appl Phys Lett, 2010; 97: 021909
[58] Liu M C, Lee C J, Lai Y H, Huang J C. Thin Solid Films, 2010; 518: 7295
[59] Zhang J Y, Lei S, Liu Y, Niu J J, Chen Y, Liu G, Zhang X, Sun J.Acta Mater, 2012; 60: 1610
[60] Kim Y, Lee J, Yeom M S, Shin J W, Kim H, Cui Y, Kysar J W, Hone J, Jung Y, Jeon S, Han S M. Nat Commun, 2013; 4: 2114
[61] Chen I W, Winn E J, Menon M.Mater Sci Eng, 2001; A317: 226
[62] Yan J W, Zhu X F, Yang B, Zhang G P. Phys Rev Lett, 2013; 110: 155502
[63] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[64] Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
[65] Yan F K, Liu G Z, Tao N R, Lu K. Acta Mater, 2012; 60: 1059
[66] Zhang J Y, Zhang X, Wang R H, Lei S Y, Zhang P, Niu J J, Liu G, Zhang G J, Sun J.Acta Mater, 2011; 59: 7368
[67] Dayal P, Quadir M Z, Kong C, Savvides N, Hoffman M. Thin Solid Films, 2011; 519: 3213
[68] Liu M C, Du X H, Lin I C, Pei H J, Huang J C.Intermetallics, 2012; 30: 30
[69] Uchic M D, Dimiduk D M, Florando J N, Nix W D. Science, 2004; 305: 986
[70] Volkert C A, Minor A M.MRS Bull, 2007; 32: 389
[71] Zheng S J, Beyerlein I J, Wang J, Carpenter J S, Han W Z, Mara N A. Acta Mater, 2012; 60: 5858
[72] Wang J, Misra A, Hoagland R G, Hirth J P. Acta Mater, 2012; 60: 1503
[73] Zhang B, Tan H F, Yan J W, Zhang M D, Sun X D, Zhang G P. Nanoscale Res Lett, 2013; 8: 44
[74] Liu H S, Zhang B, Zhang G P.Scr Mater, 2011; 64: 13
[75] Liu H S, Zhang B, Zhang G P. Scr Mater, 2011; 65: 891
[76] Liu H S. PhD Dissertation. Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012
(刘华赛. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[9] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[10] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[11] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[12] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[13] LI Dianzhong, WANG Pei. Tailoring Microstructures of Metals[J]. 金属学报, 2023, 59(4): 447-456.
[14] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[15] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
No Suggested Reading articles found!