|
|
Tailoring Microstructures of Metals |
LI Dianzhong( ), WANG Pei |
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
LI Dianzhong, WANG Pei. Tailoring Microstructures of Metals. Acta Metall Sin, 2023, 59(4): 447-456.
|
Abstract In the light of the property requirements to design microstructures will become an important develop direction of metal materials. Here, a new concept of microstructure tailoring is proposed. The main features of microstructure tailoring include designing mesoscale microstructure, establishing quantitative relation between microstructures and properties, accurately inverse-designing and fabricating microstructures to satisfy the property requirements. It means screening, multi-scale calculation, and quantification of the essential microstructural factors should be performed first. Second, the microstructures are purposefully fabricated after adjusting the thermodynamics and kinetics of phase transformation. Third, the microstructures are assessed and tailored through iterative optimization. Microstructure tailoring must be preceded by purification and homogenization of metals. Only when the purity problem of materials is solved first, the influence of inclusions and impurity elements can be eliminated. Only by eliminating the macro-segregation can the material achieve homogeneity. And then the intrinsic properties of the material be fully reflected. As an example of microstructure tailoring, this study investigates the expected fatigue-life requirements of M50 (G80Cr4Mo4V) steels used for bearings in aircraft engines. By controlling the macro-segregation and purification, it is found that the fatigue-life of M50 steel mainly depends on primary carbides. And then the size, type, and morphology of the primary carbides are quantitatively tailored to fulfill the fatigue-life requirement. With technological developments in the metallurgy industry, microstructure tailoring will become a mainstay of the development of metals. And, applying data science and modeling along with microstructure tailoring technology, the alloy design will be gradually optimized in the future. The expensive metal addition will be reduced gradually, so as to save resources and develop green materials.
|
Received: 01 November 2022
|
|
Fund: National Natural Science Foundation of China(52031013) |
Corresponding Authors:
LI Dianzhong, professor, Tel: (024)83970106, E-mail: dzli@imr.ac.cn
|
1 |
Ashby M, Shercliff H, Cebon D, et al. Materials: Engineering, Science, Processing and Design [M]. Amsterdam: Elsevier, 2007
|
2 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
|
|
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
3 |
Hu Q M, Yang R. The endless search for better alloys [J]. Science, 2022, 378: 26
doi: 10.1126/science.ade5503
|
4 |
Sun F L, Geng K, Yu F, et al. Relationship of inclusions and rolling contact fatigue life for ultra-clean bearing steel [J]. Acta Metall. Sin., 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
|
|
孙飞龙, 耿 克, 俞 峰 等. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系 [J]. 金属学报, 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
|
5 |
Li D Z, Wang P, Chen X Q, et al. Low-oxygen rare earth steels [J]. Nat. Mater., 2022, 21: 1137
doi: 10.1038/s41563-022-01352-9
pmid: 36075967
|
6 |
Flemings M C. MIT studies on dendritic solidification from 1950 to 1970 [J]. J. Cryst. Growth., 2020, 530: 125246
doi: 10.1016/j.jcrysgro.2019.125246
|
7 |
Ludwig A, Wu M H, Kharicha A. On macrosegregation [J]. Metall. Mater. Trans., 2015, 46A: 4854
|
8 |
Lesoult G. Macrosegregation in steel strands and ingots: Characterisation, formation and consequences [J]. Mater. Sci. Eng., 2005, A413-414: 19
|
9 |
Li D Z, Chen X Q, Fu P X, et al. Inclusion flotation-driven channel segregation in solidifying steels [J]. Nat. Commun., 2014, 5: 5572
doi: 10.1038/ncomms6572
pmid: 25422943
|
10 |
Li X Y, Lu K. Playing with defects in metals [J]. Nat. Mater., 2017, 16: 700
doi: 10.1038/nmat4929
pmid: 28653694
|
11 |
Yang L, Li X Y, Lu K. Making materials plain: concept, principle and applications [J]. Acta Metall. Sin., 2017, 53: 1413
|
|
杨 乐, 李秀艳, 卢 柯. 材料素化:概念、原理及应用 [J]. 金属学报, 2017, 53: 1413
|
12 |
Li X Y, Lu K. Improving sustainability with simpler alloys [J]. Science, 2019, 364: 733
doi: 10.1126/science.aaw9905
pmid: 31123122
|
13 |
Lan Y J, Li D Z, Sha X C, et al. Prediction of microstructure and mechanical properties of hot rolled steel strip: Part I - Description of models [J]. Steel Res. Int., 2004, 75: 462
doi: 10.1002/srin.2004.75.issue-7
|
14 |
Lan Y J, Li D Z, Sha X C, et al. Prediction of microstructure and mechanical properties of hot rolled strip steel: Part II - Verification and application [J]. Steel Res. Int., 2004, 75: 468
doi: 10.1002/srin.2004.75.issue-7
|
15 |
Wang C L. Phase Diagrams and Its Application [M]. 2nd Ed., Beijing: Higher Education Press, 2014: 16
|
|
王崇琳. 相图理论及其应用 [M]. 第2版. 北京: 高等教育出版社, 2014: 16
|
16 |
Reid A, Marshall M, Martinez I, et al. Measurement of strain evolution in overloaded roller bearings using time-of-flight neutron diffraction [J]. Mater. Des., 2020, 190: 108571
doi: 10.1016/j.matdes.2020.108571
|
17 |
National Science and Technology Council. Materials genome initiative for global competitiveness [R]. Washington: Executive Office of the President, National Science and Technology Council, 2011: 50
|
18 |
Xiao X Z, Chen L R, Yu L, et al. Modelling nano-indentation of ion-irradiated FCC single crystals by strain-gradient crystal plasticity theory [J]. Int. J. Plast., 2019, 116: 216
doi: 10.1016/j.ijplas.2019.01.005
|
19 |
Nimaga O G, He B B, Cheng G J, et al. Revealing orientation-dependent martensitic transformation in a medium Mn steel by micropillar compression [J]. Int. J. Plast., 2019, 123: 165
doi: 10.1016/j.ijplas.2019.07.016
|
20 |
Kapp M W, Renk O, Eckert J, et al. The importance of lamellar architecture to obtain ductility in heavily cold-worked pearlitic steels revealed by microbending experiments [J]. Acta Mater., 2022, 232: 117935
doi: 10.1016/j.actamat.2022.117935
|
21 |
Zheng X D, Han W, Yang K, et al. Phase and polarization modulation in two-dimensional In2Se3 via in situ transmission electron microscopy [J]. Sci. Adv., 2022, 8: eabo0773
doi: 10.1126/sciadv.abo0773
|
22 |
Guo Y, Britton T B, Wilkinson A J. Slip band-grain boundary interactions in commercial-purity titanium [J]. Acta Mater., 2014, 76: 1
doi: 10.1016/j.actamat.2014.05.015
|
23 |
Guo Y, Abdolvand H, Britton T B, et al. Growth of { 11 2 ¯ 2 } twins in titanium: A combined experimental and modelling investigation of the local state of deformation [J]. Acta Mater., 2017, 126: 221
doi: 10.1016/j.actamat.2016.12.066
|
24 |
Zhou H, Zhang X, Wang P, et al. Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations [J]. Int. J. Plast., 2019, 119: 249
doi: 10.1016/j.ijplas.2019.04.009
|
25 |
Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction [J]. Acta Mater., 2004, 52: 5737
doi: 10.1016/j.actamat.2004.08.016
|
26 |
Fu B, Yang W Y, Wang Y D, et al. Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction [J]. Acta Mater., 2014, 76: 342
doi: 10.1016/j.actamat.2014.05.029
|
27 |
Jacques P J, Furnémont Q, Lani F, et al. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing [J]. Acta Mater., 2007, 55: 3681
doi: 10.1016/j.actamat.2007.02.029
|
28 |
Zhang X, Wang P, Li D Z, et al. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72: 180
doi: 10.1016/j.jmst.2020.09.023
|
29 |
Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
doi: 10.1016/j.actamat.2009.10.058
|
30 |
Hidalgo J, Vittorietti M, Farahani H, et al. Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel [J]. Acta Mater., 2020, 200: 74
doi: 10.1016/j.actamat.2020.08.072
|
31 |
Bong H J, Hu X, Sun X, et al. Mechanism-based constitutive modeling of ZEK100 magnesium alloy with crystal plasticity and in-situ HEXRD experiment [J]. Int. J. Plast., 2019, 113: 35
doi: 10.1016/j.ijplas.2018.09.005
|
32 |
Chen B, Jiang J, Dunne F P E. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? [J]. Int. J. Plast., 2018, 101: 213
doi: 10.1016/j.ijplas.2017.11.005
|
33 |
Hestroffer J M, Latypov M I, Stinville J C, et al. Development of grain-scale slip activity and lattice rotation fields in Inconel 718 [J]. Acta Mater., 2022, 226: 117627
doi: 10.1016/j.actamat.2022.117627
|
34 |
National Research Council. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security [M]. Washington: The National Academies Press, 2008: 16
|
35 |
Holdren J P. National science and technology council, committee on technology, subcommittee on the materials genome initiative, materials genome initiative strategic plan [J]. 2014.
|
36 |
Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
doi: 10.1016/j.actamat.2019.08.033
|
37 |
Wei X L, van der Zwaag S, Jia Z X, et al. On the use of transfer modeling to design new steels with excellent rotating bending fatigue resistance even in the case of very small calibration datasets [J]. Acta Mater., 2022, 235: 118103
doi: 10.1016/j.actamat.2022.118103
|
38 |
Chen B, Jiang J, Dunne F P E. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? [J]. Int. J. Plast., 2018, 101: 213
doi: 10.1016/j.ijplas.2017.11.005
|
39 |
Paramatmuni C, Guo Y, Withers P J, et al. A three-dimensional mechanistic study of the drivers of classical twin nucleation and variant selection in Mg alloys: A mesoscale modelling and experimental study [J]. Int. J. Plast., 2021, 143: 103027
doi: 10.1016/j.ijplas.2021.103027
|
40 |
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177
pmid: 28839008
|
41 |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
|
42 |
Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
|
43 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
|
44 |
Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578
pmid: 24136963
|
45 |
Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing [J]. Nature, 2022, 608: 62
doi: 10.1038/s41586-022-04914-8
|
46 |
Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength Damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
|
47 |
Du N Y, Liu H H, Cao Y F, et al. Formation mechanism of MC and M2C primary carbides in as-cast M50 bearing steel [J]. Mater. Charact., 2021, 174: 111011
doi: 10.1016/j.matchar.2021.111011
|
48 |
Bhadeshia H K D H. Steels for bearings [J]. Prog. Mater. Sci., 2012, 57: 268
doi: 10.1016/j.pmatsci.2011.06.002
|
49 |
Du N Y, Liu H H, Cao Y F, et al. In situ investigation of the fracture of primary carbides and its mechanism in M50 steel [J]. Mater. Charact., 2022, 186: 111822
doi: 10.1016/j.matchar.2022.111822
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|