Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (4): 447-456    DOI: 10.11900/0412.1961.2022.00555
Perspective Current Issue | Archive | Adv Search |
Tailoring Microstructures of Metals
LI Dianzhong(), WANG Pei
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LI Dianzhong, WANG Pei. Tailoring Microstructures of Metals. Acta Metall Sin, 2023, 59(4): 447-456.

Download:  HTML  PDF(2208KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the light of the property requirements to design microstructures will become an important develop direction of metal materials. Here, a new concept of microstructure tailoring is proposed. The main features of microstructure tailoring include designing mesoscale microstructure, establishing quantitative relation between microstructures and properties, accurately inverse-designing and fabricating microstructures to satisfy the property requirements. It means screening, multi-scale calculation, and quantification of the essential microstructural factors should be performed first. Second, the microstructures are purposefully fabricated after adjusting the thermodynamics and kinetics of phase transformation. Third, the microstructures are assessed and tailored through iterative optimization. Microstructure tailoring must be preceded by purification and homogenization of metals. Only when the purity problem of materials is solved first, the influence of inclusions and impurity elements can be eliminated. Only by eliminating the macro-segregation can the material achieve homogeneity. And then the intrinsic properties of the material be fully reflected. As an example of microstructure tailoring, this study investigates the expected fatigue-life requirements of M50 (G80Cr4Mo4V) steels used for bearings in aircraft engines. By controlling the macro-segregation and purification, it is found that the fatigue-life of M50 steel mainly depends on primary carbides. And then the size, type, and morphology of the primary carbides are quantitatively tailored to fulfill the fatigue-life requirement. With technological developments in the metallurgy industry, microstructure tailoring will become a mainstay of the development of metals. And, applying data science and modeling along with microstructure tailoring technology, the alloy design will be gradually optimized in the future. The expensive metal addition will be reduced gradually, so as to save resources and develop green materials.

Key words:  metal      tailoring microstructure      microstructure      service performance evaluation     
Received:  01 November 2022     
ZTFLH:  TG113.1  
Fund: National Natural Science Foundation of China(52031013)
Corresponding Authors:  LI Dianzhong, professor, Tel: (024)83970106, E-mail: dzli@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00555     OR     https://www.ams.org.cn/EN/Y2023/V59/I4/447

Fig.1  Schematical technology route of tailoring microstructures of metals
Fig.2  Inclusions in the M50 steel manufactured by vacuum induction melting (VIM) + vacuum arc remelting (VAR) and low-oxygen RE treatment
Fig.3  Typical morphology of primary carbides in M50 steel
Fig.4  Morphology and EDS element mappings of crack initiation region in tension-compression fatigue specimens of M50 steel (a-c) (FGA—fine grain area)
Fig.5  SEM image of the tailored microstructure of M50 steel (The size of primary carbide ≤ 20 μm)
Fig.6  Weibull distribution curves of ± 900 MPa tension-compression fatigue life of M50 steel prepared by different processes (S1 and S2 curves are the fatigue life of M50 steel manufactured by microstructure tailoring technology and normal technology, respectively)
1 Ashby M, Shercliff H, Cebon D, et al. Materials: Engineering, Science, Processing and Design [M]. Amsterdam: Elsevier, 2007
2 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
3 Hu Q M, Yang R. The endless search for better alloys [J]. Science, 2022, 378: 26
doi: 10.1126/science.ade5503
4 Sun F L, Geng K, Yu F, et al. Relationship of inclusions and rolling contact fatigue life for ultra-clean bearing steel [J]. Acta Metall. Sin., 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
孙飞龙, 耿 克, 俞 峰 等. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系 [J]. 金属学报, 2020, 56: 693
doi: 10.11900/0412.1961.2019.00337
5 Li D Z, Wang P, Chen X Q, et al. Low-oxygen rare earth steels [J]. Nat. Mater., 2022, 21: 1137
doi: 10.1038/s41563-022-01352-9 pmid: 36075967
6 Flemings M C. MIT studies on dendritic solidification from 1950 to 1970 [J]. J. Cryst. Growth., 2020, 530: 125246
doi: 10.1016/j.jcrysgro.2019.125246
7 Ludwig A, Wu M H, Kharicha A. On macrosegregation [J]. Metall. Mater. Trans., 2015, 46A: 4854
8 Lesoult G. Macrosegregation in steel strands and ingots: Characterisation, formation and consequences [J]. Mater. Sci. Eng., 2005, A413-414: 19
9 Li D Z, Chen X Q, Fu P X, et al. Inclusion flotation-driven channel segregation in solidifying steels [J]. Nat. Commun., 2014, 5: 5572
doi: 10.1038/ncomms6572 pmid: 25422943
10 Li X Y, Lu K. Playing with defects in metals [J]. Nat. Mater., 2017, 16: 700
doi: 10.1038/nmat4929 pmid: 28653694
11 Yang L, Li X Y, Lu K. Making materials plain: concept, principle and applications [J]. Acta Metall. Sin., 2017, 53: 1413
杨 乐, 李秀艳, 卢 柯. 材料素化:概念、原理及应用 [J]. 金属学报, 2017, 53: 1413
12 Li X Y, Lu K. Improving sustainability with simpler alloys [J]. Science, 2019, 364: 733
doi: 10.1126/science.aaw9905 pmid: 31123122
13 Lan Y J, Li D Z, Sha X C, et al. Prediction of microstructure and mechanical properties of hot rolled steel strip: Part I - Description of models [J]. Steel Res. Int., 2004, 75: 462
doi: 10.1002/srin.2004.75.issue-7
14 Lan Y J, Li D Z, Sha X C, et al. Prediction of microstructure and mechanical properties of hot rolled strip steel: Part II - Verification and application [J]. Steel Res. Int., 2004, 75: 468
doi: 10.1002/srin.2004.75.issue-7
15 Wang C L. Phase Diagrams and Its Application [M]. 2nd Ed., Beijing: Higher Education Press, 2014: 16
王崇琳. 相图理论及其应用 [M]. 第2版. 北京: 高等教育出版社, 2014: 16
16 Reid A, Marshall M, Martinez I, et al. Measurement of strain evolution in overloaded roller bearings using time-of-flight neutron diffraction [J]. Mater. Des., 2020, 190: 108571
doi: 10.1016/j.matdes.2020.108571
17 National Science and Technology Council. Materials genome initiative for global competitiveness [R]. Washington: Executive Office of the President, National Science and Technology Council, 2011: 50
18 Xiao X Z, Chen L R, Yu L, et al. Modelling nano-indentation of ion-irradiated FCC single crystals by strain-gradient crystal plasticity theory [J]. Int. J. Plast., 2019, 116: 216
doi: 10.1016/j.ijplas.2019.01.005
19 Nimaga O G, He B B, Cheng G J, et al. Revealing orientation-dependent martensitic transformation in a medium Mn steel by micropillar compression [J]. Int. J. Plast., 2019, 123: 165
doi: 10.1016/j.ijplas.2019.07.016
20 Kapp M W, Renk O, Eckert J, et al. The importance of lamellar architecture to obtain ductility in heavily cold-worked pearlitic steels revealed by microbending experiments [J]. Acta Mater., 2022, 232: 117935
doi: 10.1016/j.actamat.2022.117935
21 Zheng X D, Han W, Yang K, et al. Phase and polarization modulation in two-dimensional In2Se3 via in situ transmission electron microscopy [J]. Sci. Adv., 2022, 8: eabo0773
doi: 10.1126/sciadv.abo0773
22 Guo Y, Britton T B, Wilkinson A J. Slip band-grain boundary interactions in commercial-purity titanium [J]. Acta Mater., 2014, 76: 1
doi: 10.1016/j.actamat.2014.05.015
23 Guo Y, Abdolvand H, Britton T B, et al. Growth of { 11 2 ¯ 2 } twins in titanium: A combined experimental and modelling investigation of the local state of deformation [J]. Acta Mater., 2017, 126: 221
doi: 10.1016/j.actamat.2016.12.066
24 Zhou H, Zhang X, Wang P, et al. Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations [J]. Int. J. Plast., 2019, 119: 249
doi: 10.1016/j.ijplas.2019.04.009
25 Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction [J]. Acta Mater., 2004, 52: 5737
doi: 10.1016/j.actamat.2004.08.016
26 Fu B, Yang W Y, Wang Y D, et al. Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction [J]. Acta Mater., 2014, 76: 342
doi: 10.1016/j.actamat.2014.05.029
27 Jacques P J, Furnémont Q, Lani F, et al. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing [J]. Acta Mater., 2007, 55: 3681
doi: 10.1016/j.actamat.2007.02.029
28 Zhang X, Wang P, Li D Z, et al. Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel [J]. J. Mater. Sci. Technol., 2021, 72: 180
doi: 10.1016/j.jmst.2020.09.023
29 Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications [J]. Acta Mater., 2010, 58: 1152
doi: 10.1016/j.actamat.2009.10.058
30 Hidalgo J, Vittorietti M, Farahani H, et al. Influence of M23C6 carbides on the heterogeneous strain development in annealed 420 stainless steel [J]. Acta Mater., 2020, 200: 74
doi: 10.1016/j.actamat.2020.08.072
31 Bong H J, Hu X, Sun X, et al. Mechanism-based constitutive modeling of ZEK100 magnesium alloy with crystal plasticity and in-situ HEXRD experiment [J]. Int. J. Plast., 2019, 113: 35
doi: 10.1016/j.ijplas.2018.09.005
32 Chen B, Jiang J, Dunne F P E. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? [J]. Int. J. Plast., 2018, 101: 213
doi: 10.1016/j.ijplas.2017.11.005
33 Hestroffer J M, Latypov M I, Stinville J C, et al. Development of grain-scale slip activity and lattice rotation fields in Inconel 718 [J]. Acta Mater., 2022, 226: 117627
doi: 10.1016/j.actamat.2022.117627
34 National Research Council. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security [M]. Washington: The National Academies Press, 2008: 16
35 Holdren J P. National science and technology council, committee on technology, subcommittee on the materials genome initiative, materials genome initiative strategic plan [J]. 2014.
36 Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
doi: 10.1016/j.actamat.2019.08.033
37 Wei X L, van der Zwaag S, Jia Z X, et al. On the use of transfer modeling to design new steels with excellent rotating bending fatigue resistance even in the case of very small calibration datasets [J]. Acta Mater., 2022, 235: 118103
doi: 10.1016/j.actamat.2022.118103
38 Chen B, Jiang J, Dunne F P E. Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? [J]. Int. J. Plast., 2018, 101: 213
doi: 10.1016/j.ijplas.2017.11.005
39 Paramatmuni C, Guo Y, Withers P J, et al. A three-dimensional mechanistic study of the drivers of classical twin nucleation and variant selection in Mg alloys: A mesoscale modelling and experimental study [J]. Int. J. Plast., 2021, 143: 103027
doi: 10.1016/j.ijplas.2021.103027
40 He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177 pmid: 28839008
41 Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
42 Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation [J]. Nature, 2017, 544: 460
doi: 10.1038/nature22032
43 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
44 Liu X C, Zhang H W, Lu K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel [J]. Science, 2013, 342: 337
doi: 10.1126/science.1242578 pmid: 24136963
45 Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing [J]. Nature, 2022, 608: 62
doi: 10.1038/s41586-022-04914-8
46 Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength Damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
47 Du N Y, Liu H H, Cao Y F, et al. Formation mechanism of MC and M2C primary carbides in as-cast M50 bearing steel [J]. Mater. Charact., 2021, 174: 111011
doi: 10.1016/j.matchar.2021.111011
48 Bhadeshia H K D H. Steels for bearings [J]. Prog. Mater. Sci., 2012, 57: 268
doi: 10.1016/j.pmatsci.2011.06.002
49 Du N Y, Liu H H, Cao Y F, et al. In situ investigation of the fracture of primary carbides and its mechanism in M50 steel [J]. Mater. Charact., 2022, 186: 111822
doi: 10.1016/j.matchar.2022.111822
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
No Suggested Reading articles found!